
An Eye-tracking Study Assessing the Comprehension of C++ and
Python Source Code

Rachel Turner
Department of Computer Science and

Information Systems
Youngstown State University

raturner@student.ysu.edu

Michael Falcone
Department of Computer Science
University of Southern California

mfalcone@usc.edu

Bonita Sharif, Alina Lazar
Department of Computer Science and

Information Systems
Youngstown State University

{bsharif, alazar}@ysu.edu

Abstract

A study to assess the effect of programming language on student
comprehension of source code is presented, comparing the lan-
guages of C++ and Python in two task categories: overview and
find bug tasks. Eye gazes are tracked while thirty-eight students
complete tasks and answer questions. Results indicate no signif-
icant difference in accuracy or time, however there is a signifi-
cant difference reported on the rate at which students look at
buggy lines of code. These results start to provide some direc-
tion as to the effect programming language might have in intro-
ductory programming classes.

CR Categories: D.3 [Programming Languages], F.3.3 Studies
of Program Constructs

Keywords: eye-tracking study, reading source code, C++, Py-
thon

1 Introduction

Does programming language affect one’s ability to learn and
comprehend source code? Which language should instructors
use to teach programming? Is there a specific language that is
more effective and efficient for certain types of developers (nov-
ices) compared to others? These questions have gathered much
debate among programmers and instructors in the software engi-
neering community. In this paper, we present a study aiming to
understand if and how programming language affects the way
programmers are able to comprehend simple source code.

We focus on two prevalent languages: C++ and Python. We
chose C++ because it is a classic language that has maintained
its popularity over the years. Proponents of Python state that it is
simpler and more elegant than C++ [Agarwal and Agarwal
2005]. This study empirically evaluates whether this is indeed
the case based on programmers’ visual effort and comprehen-
sion of code. According to Glass [Glass 2002], programming
should be taught by first reading existing programs rather than
writing them (traditional teaching method). There have been
some studies done in the classroom to determine if a certain
language is better by looking at student grades [Enbody et al.
2009]. These types of studies provide information after the task
has completed and do not give any insight into what transpired

while the subject was actually performing the task. In this paper,
we try to determine, via a controlled experiment, if there is a
difference in the way programmers read and comprehend source
code given a particular programming language.

We use an eye-tracker to unobtrusively record programmers’
eye movements as they are performing tasks in 1) analyzing and
explaining source code (overview task) and 2) finding bugs in
source code (find-bug task). Results on task accuracy, task
speed, and visual effort are reported. We also report differences
in gaze patterns between novices and non-novices. These results
can provide insight into the ways in which programming lan-
guage affects analyzing and debugging code, which can have a
direct impact on both academia and industry. In academia, us-
ing a programming language that is known to be more compre-
hensible can help students better learn core programming con-
cepts. In industry, comprehensibility can impact language choice
for new projects. The research questions this paper addresses
are:

 RQ1: Does programming language affect the effectiveness
and efficiency of solving overview and bug finding tasks?

 RQ2: Is there a difference in visual effort while reading and
analyzing source code in C++ vs. Python?

 RQ3: Is there a difference in eye gaze behavior between
novices and non-novices across C++ and Python?

2 Experimental Design

The goal definition template by Wohlin [Wohlin et al. 1999] is
used to describe the experiment. The experiment seeks to ana-
lyze two programming languages (C++ and Python) for the pur-
pose of evaluating their impact in overview and bug finding
tasks with respect to effectiveness (accuracy), efficiency (time),
and visual effort from the point of view of the researcher in the
context of students at Youngstown State University. The main
factor being analyzed is the programming language used. A
between-subjects design was used, where each subject was test-
ed on either C++ or Python programs but not both. We chose
this design to shorten total study time and increase the data
points in each language. There are three dependent variables:
accuracy, time, and visual effort. The data collection was done
via a video camera and eye-tracking equipment. Based on the
research questions presented above, four detailed null hypothe-
ses based on each of the three dependent variables are given
below.

 Ha: There is no significant difference in accuracy between
C++ and Python programs for overview and bug finding
tasks.

 Ht: There is no significant difference in time between C++
and Python programs for overview and bug finding tasks.

 Hve: There is no significant difference in visual effort be-
tween C++ and Python programs for overview and bug
finding tasks.

 He: There is no significant difference between novices and
non-novices in terms of accuracy, time, or visual effort, for
C++ and Python programs for overview and bug finding
tasks.

Previous work has shown that visual attention triggers mental
processes and that visual effort is directly linked to cognitive
effort [Duchowski 2003]. It has also been shown that processing
of visual information occurs during fixations—prolonged gazes
on a fixed locations, whereas no such processing occurs during
saccades—time between fixations [Duchowski 2003]. We used
a Mirametrix S2 eye tracker for this study, which records fixa-
tions as well as screen-capture audio/video. It is a video-based
binocular remote eye tracker with a 60Hz capture rate and 0.5 to
1.0 degrees of average accuracy.

2.1 Programs, Tasks, and Stimuli

We chose simple code snippets as stimuli that contained funda-
mental programming concepts such as if statements, un-nested
loops, arrays, and basic input and output to screen. We wanted
the subjects to complete the study in a short time frame of less
than 15 minutes to avoid any issues with fatigue. A total of ten
stimuli (five in C++ and five in Python) were used. Each stimu-
lus falls into one of two task categories: overview or find bugs.
See Table 1 for an overview of the tasks used. A replication
package is available at http://www.csis.ysu.edu/~bsharif/etra14.
Each Python stimulus was shorter than its C++ counterpart due
to the inherent nature of the language. Figure 1 shows an exam-
ple of one code snippet shown to subjects, in both languages.
Font size was kept the same for each task across C++ and Py-
thon and was chosen such that the eye tracker could distinguish
between each line of code. Tasks were presented to subjects as
follows.

Overview task: “Describe accurately and completely what the
code does in your own words. You may also state the output
if possible”
Find Bug task: “State the line number(s) that the logical error
is located on. Describe in words what the error is and how
you would go about fixing it”

2.2 Dependent Variables

Accuracy refers to whether subjects answered the task correctly
and was scored from 1 (completely wrong) to 5 (fully correct).
A systematic rubric for assessing the answers was defined for
both find-bug and overview tasks and is provided with the repli-
cation package. Time refers to the number of milliseconds spent
answering each task. Visual Effort is measured by fixation dura-
tion and number of fixations on each area of interest (AOI). The

first two measures for visual effort are defined for both overview
and find-bug tasks. The latter two are for find-bug tasks.

 Fixation Count (TotalFC) – Total number of eye fixations
on the entire stimulus

 Fixation Duration (TotalFD) – Total time (ms) of all fixa-
tions on the entire stimulus

 Fixation Rate on Buggy Line(s) (FRBugLine) – Total num-
ber of eye fixations on the lines of code.

 Fixation Duration on Buggy Line(s) (FDBugLine) – Total
time (ms) of all fixations on the buggy lines of code.

A higher fixation count, duration, and fixation rate indicates
more effort exerted by subjects to solve the task. For overview
tasks, the subject reads the entire code to figure out what it does.
For find-bug tasks, the subject reads a code description and then
reads the code to determine where it does not meet the descrip-
tion. Even though both tasks involve reading, it is expected that
the method of reading is different between the two tasks.

2.3 Participants

The subject pool consisted of a mix of 38 undergraduate and
graduate students from Youngstown State University, recruited
from beginning and advanced programming and problem solv-
ing courses. Participation was voluntary and no compensation
was provided. Subject ages ranged from 18 to 45 years. Each
subject was assigned to the C++ or Python group and classified
as novice or non-novice based on their experience as indicated
in answers to a background questionnaire administered one
week prior to participation. There were 25 participants in the
C++ group and 13 in the Python group, due to fewer program-
ming and problem solving courses taught with Python as the
primary language. All subjects had normal vision. Some wore
contacts or corrective lenses but this did not affect the measure-
ments of the eye tracker.

2.4 Study Procedure and Instrumentation

The study was conducted in accordance with IRB policies and
procedures at a dedicated Usability Lab. On the day of the study,
subjects were informed that the purpose of the study was to un-
derstand how programmers debug and comprehend source code.
They were seated approximately 65 cm away from the screen.
Before viewing a task, subjects were presented with a screen
giving instructions on what the upcoming task was. The two
overview tasks were presented first (in a random order) followed
by the three find-bug tasks (in a random order). Subjects did not
interact with the keyboard or mouse and all answers were col-
lected verbally. A short post questionnaire collected data about
question difficulty, clarity, time needed, and familiarity with the
tasks.

Table 1: Overview of tasks and stimuli used in the study. The bugs were located on the following lines given in parentheses: B1(4 and 7), B2(5), and B3(3)
for C++ and B1(2 and 5), B2(3), and B3(3) for Python

Task
ID

Task
Category

Program
Name

Program Description Font Size
(pt)

LOC in
C++

LOC in
Python

O1 Overview Rounding Prints Round down 5 times
Prints Round up 6 times

31 12 7

O2 Overview Factorial Find the factorial of the number input 27 13 12
B1 Find Bug Age Prints an appropriate statement based on

entered age
32 10 8

B2 Find Bug Count by 5 Count by 5 from the entered number 10
times

34 9 6

B3 Find Bug Print array Print all items in an array 32 5 4

Figure 1: Stimulus B1 for Python (left) and C++ (right) with the program specification shown on top.

3 Experimental Results

The collected data consisted of a single screen capture video and
a sequence of raw eye fixations in XML format for each subject.
Some records had to be discarded due to technical and data in-
tegrity issues. Video and fixations were recorded continuously
over all stimuli, so we defined task boundaries and AOIs a pos-
teri using a tool built in Visual Basic .NET. This tool allowed us
to define task boundaries as well as measure fixation counts and
total fixation duration within each AOI. The tool is freely avail-
able at https://github.com/seresl/EyeAnalyzer. Descriptive statis-
tics are shown in Figure 2 across all tasks cumulatively. Data
from two participants was lost due to technical difficulties and
data from the first stimulus had to be thrown out for two subjects
due to user error. A total of 38 participant data records were
retained and used. To compare results between groups, we used
a linear mixed-effects regression model (that works well on
unbalanced data) as well as a Mann-Whitney non-parametric
test.

3.1 Accuracy, Time and Visual Effort

The two rows in Table 2 present the results for accuracy and
time using the non-parametric Mann Whitney test. The median
accuracy of the C++ group is slightly higher compared to the
Python group. With respect to total accuracy for all the five
tasks, the results indicate no difference between C++ and Py-
thon. The same can be said about the total time for all five tasks.
This indicates that we cannot reject null hypotheses Ha and Ht.
We also ran the test on individual task categories. This also did
not uncover any significant differences. The linear mixed-
effects regression test did not yield significant or interesting
results. The four rows in Table 3 present results for the fixation
counts, fixation durations, and fixation rate and duration on bug-
gy lines (for bug tasks). These are shown combined for all five
tasks. There is no significant difference for fixation counts and
fixation durations between C++ and Python. However, we did
find a significant difference (p-value=0.036) between the fixa-
tion rate on buggy lines of code (when looking at all three bug
related tasks) between C++ and Python.

A linear mixed-effects regression model was also created along
with a further breakdown analysis on each of the three bug tasks.
This regression model confirms significance for the fixation rate
on buggy lines of code (p-value =0.043) and also shows that the
first find-bug task (B1) resulted in a difference between C++ and
Python groups. However, no significant difference was found
for fixation durations on buggy lines of code. We can only re-
ject null hypothesis Hve with respect to the rate at which subjects
fixate on buggy lines of code. With respect to B1, the fixation
rate for Python (mean: 0.347) was higher than the fixation rate

for C++ (mean: 0.286). This means that the C++ group had
fewer eye fixations on the buggy line of code compared to the
Python group. See Figure 1 for the two B1 task programs as
shown to the subjects.

3.2 Secondary Factor Interactions

We also wanted to determine if there were any interactions be-
tween subject ability: novice and non-novice on the results.
There were 17 novices and 8 non-novices in the C++ group.
The Python group had 10 novices and 3 non-novices. We again
employed a linear mixed-effects regression model, using two
explanatory variables: programming language (C++, Python)
and ability level (novice, non-novice). The test found statistical-
ly significant differences between novices and non-novices in
accuracy of bug tasks (p-value=0.002, st. error=0.412, t= 2.032),
with non-novices performing 1.4 times better than novices.
There was also a significant difference for the B1 find-bug task
between C++ and Python with respect to novices (p-
value=0.038) for the visual effort measure FRBugLine. Novices
tend to have a higher fixation rate for Python compared to C++
on buggy lines of code in the B1 task. Within the C++ group,
there is a difference (p-value=0.04) between novices and non-
novices with respect to the fixation duration on buggy lines of
code for find-bug task B1. Also, the accuracy of find-bug tasks
were higher for the Python group. Among novices, the gap be-
tween find-bug task accuracy for C++ and Python was almost
non-existent. Based on the above results, we can reject the null
hypothesis He which means that there is a significant difference
between novices and non-novices with respect to accuracy and
fixation rate, and fixation duration on buggy lines for find-bug
tasks.

Table 2: Un-paired Mann-Whitney p-values (alpha=0.05) for overall (all
tasks) accuracy and time

Dependent Variables U p-value (2-tailed)

Accuracy 186.500 0.466

Time 158.000 0.902

Table 3: Un-paired Mann-Whitney p-values (alpha=0.05) for overall (all
tasks) fixation counts, fixation durations, fixation rate on buggy

lines and fixation duration on buggy lines.

Dependent Variables U p-value (2-tailed)

TotalFC 172 0.782

TotalFD 169 0.854

FRBugLine (for find-bug tasks) 94 0.036 *

FDBugLine (for find-bug tasks) 124 0.242

Figure 2: Accuracy, time, fixation counts and fixation duration box plots for C++ and Python

4 Discussion

Total accuracy for all tasks was higher for the C++ group. This
was true for both novices and non-novices. With respect to
time, the Python group took longer to solve all the tasks. Non-
novices took longer in Python than novices. In the C++ group,
novices took longer than non-novices. Novices tend to have
higher total fixation counts in C++ compared to Python whereas
non-novices had lower total fixation counts in C++. The total
fixation duration for C++ and Python was almost same for non-
novices whereas for novices, C++ had a slightly higher total
fixation duration. For fixation rate on all the buggy lines of
code, novices had a lower fixation rate compared to non-novices
for Python. Among novices, Python had a higher fixation rate
than C++. Finally, for fixation duration on all buggy lines of
code, non-novices had mostly same fixation durations in both
C++ and Python however, novices had higher fixation durations
in Python.

It is possible that the non-novices were more accustomed to C++
and thus took longer in Python or this could also be attributed to
the choice of the programs and the smaller Python sample. A
larger study is called for to mitigate these threats. We now re-
visit the research questions posed in the Introduction. We did not
find any significant differences in accuracy and time between
C++ and Python (RQ1). We did find a difference in visual effort
between C++ and Python but only with respect to how often
subjects fixate on buggy lines of code (RQ2). There was also a
significant difference in eye gaze behavior between novices and
non-novices across C++ and Python (RQ3). However, given all
of these results combined, we cannot yet recommend one lan-
guage over the other for comprehending simple code such as
that seen in this study. This study only represents a first step in
understanding learning differences between languages.

5 Related Work

There are no eye tracking studies comparing C++ and Python
source code. Very recently, Hansen et al. [Hansen et al. 2013]
look at what parts of Python code are found most difficult.
However, they do not compare Python and C++ and the results
of the eye-tracking part of the Python study are yet to be pub-
lished. Crosby and Stelovksy explored the way subjects viewed
an algorithm and discovered that the eye movements of experts
and novices differ in the way they looked at English and Pascal
versions of an algorithm [Crosby and Stelovsky 1990]. Bed-
narik et al. investigated the visual attention of experts versus
novices in debugging code [Bednarik and Tukiainen 2008]. No
significant correlation was found between patterns of eye
movement and performance in using the debugger. Uwano et al.
also studied eye gaze patterns of five individuals while they
were detecting defects in source code [Uwano et al. 2006]. This
study was replicated by [Sharif et al. 2012]. Recently, [Binkley
et al. 2013] study the impact of identifier style (i.e., camel case

or underscore) on code reading and comprehension using an
eye-tracker and found camel case to be an overall better choice.

6 Conclusions and Future Work

We present the results of an empirical study looking at accuracy,
speed, and visual effort of subjects reading short C++ and Py-
thon code to complete overview and bug finding tasks. We
found no statistical difference between C++ and Python with
respect to accuracy and time, but did find significant difference
between C++ and Python for fixation rate on buggy lines of
code for find-bug tasks. As future work, we are conducting an-
other study focusing on the main differences in the programming
constructs of C++ and Python done using the within-subjects
design, where each subject sees both C++ and Python code.

References

AGARWAL, K.K. AND AGARWAL, A. 2005. Python for Cs1, Cs2
and Beyond. Journ. of Comp. Sciences in Colleges 20, 262-
270.

BEDNARIK, R. AND TUKIAINEN, M. 2008. Temporal Eye-
Tracking Data: Evolution of Debugging Strategies with
Multiple Representations. In Symposium on Eye Tracking
Research & Applications (ETRA) ACM, Georgia, 99-102.

BINKLEY, D., DAVIS, M., LAWRIE, D., MALETIC, J.I., MORRELL,
C. AND SHARIF, B. 2013. The Impact of Identifier Style on
Effort and Comprehension. ESE Journal 18, 219-276.

CROSBY, M.E. AND STELOVSKY, J. 1990. How Do We Read
Algorithms? A Case Study. IEEE Computer 23, 24-35.

DUCHOWSKI, A.T. 2003. Eye Tracking Methodology: Theory and
Practice. Springer-Verlag, London.

ENBODY, R.J., PUNCH, W.F. AND MCCULLEN, M. 2009. Python
Cs1 as Preparation for C++ Cs2. In SIGCSE 2009 ACM,
Chattanooga, Tennesee, USA, 116-120.

GLASS, R.L. 2002. Facts and Fallacies of Software Engineering.
Addison-Wesley Professional.

HANSEN, M., GOLDSTONE, R. AND LUMSDAINE, A. 2013. What
Makes Code Hard to Understand? ArXiv e-prints.

SHARIF, B., FALCONE, M. AND MALETIC, J.I. 2012. An Eye-
Tracking Study on the Role of Scan Time in Finding Source
Code Defects. In ETRA, Santa Barbara, CA, 381-384

UWANO, H., NAKAMURA, M., MONDEN, A. AND MATSUMOTO,
K. 2006. Analyzing Individual Performance of Source Code
Review Using Reviewers' Eye Movement. In ETRA, ACM
Press, San Diego, 133-140.

WOHLIN, C., RUNESON, P., HÖST, M., OHLSSON, M.C., REGNELL,
B. AND WESSLÉN, A. 1999. Experimentation in Software
Engineering - an Introduction. Kluwer Academic Press.

