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Abstract 

A study to assess the effect of programming language on student 
comprehension of source code is presented, comparing the lan-
guages of C++ and Python in two task categories: overview and 
find bug tasks. Eye gazes are tracked while thirty-eight students 
complete tasks and answer questions. Results indicate no signif-
icant difference in accuracy or time, however there is a signifi-
cant difference reported on the rate at which students look at 
buggy lines of code. These results start to provide some direc-
tion as to the effect programming language might have in intro-
ductory programming classes. 

CR Categories: D.3 [Programming Languages], F.3.3 Studies 
of Program Constructs  

Keywords: eye-tracking study, reading source code, C++, Py-
thon 

1 Introduction 

Does programming language affect one’s ability to learn and 
comprehend source code? Which language should instructors 
use to teach programming? Is there a specific language that is 
more effective and efficient for certain types of developers (nov-
ices) compared to others? These questions have gathered much 
debate among programmers and instructors in the software engi-
neering community. In this paper, we present a study aiming to 
understand if and how programming language affects the way 
programmers are able to comprehend simple source code.  

We focus on two prevalent languages: C++ and Python. We 
chose C++ because it is a classic language that has maintained 
its popularity over the years. Proponents of Python state that it is 
simpler and more elegant than C++ [Agarwal and Agarwal 
2005]. This study empirically evaluates whether this is indeed 
the case based on programmers’ visual effort and comprehen-
sion of code. According to Glass [Glass 2002], programming 
should be taught by first reading existing programs rather than 
writing them (traditional teaching method). There have been 
some studies done in the classroom to determine if a certain 
language is better by looking at student grades [Enbody et al. 
2009].  These types of studies provide information after the task 
has completed and do not give any insight into what transpired 

while the subject was actually performing the task. In this paper, 
we try to determine, via a controlled experiment, if there is a 
difference in the way programmers read and comprehend source 
code given a particular programming language. 

We use an eye-tracker to unobtrusively record programmers’ 
eye movements as they are performing tasks in 1) analyzing and 
explaining source code (overview task) and 2) finding bugs in 
source code (find-bug task). Results on task accuracy, task 
speed, and visual effort are reported. We also report differences 
in gaze patterns between novices and non-novices. These results 
can provide insight into the ways in which programming lan-
guage affects analyzing and debugging code, which can have a 
direct impact on both academia and industry.  In academia, us-
ing a programming language that is known to be more compre-
hensible can help students better learn core programming con-
cepts. In industry, comprehensibility can impact language choice 
for new projects.  The research questions this paper addresses 
are: 

 RQ1: Does programming language affect the effectiveness 
and efficiency of solving overview and bug finding tasks? 

 RQ2: Is there a difference in visual effort while reading and 
analyzing source code in C++ vs. Python? 

 RQ3: Is there a difference in eye gaze behavior between 
novices and non-novices across C++ and Python? 

2 Experimental Design  

The goal definition template by Wohlin [Wohlin et al. 1999] is 
used to describe the experiment.  The experiment seeks to ana-
lyze two programming languages (C++ and Python) for the pur-
pose of evaluating their impact in overview and bug finding 
tasks with respect to effectiveness (accuracy), efficiency (time), 
and visual effort from the point of view of the researcher in the 
context of students at Youngstown State University.  The main 
factor being analyzed is the programming language used.  A 
between-subjects design was used, where each subject was test-
ed on either C++ or Python programs but not both.  We chose 
this design to shorten total study time and increase the data 
points in each language. There are three dependent variables: 
accuracy, time, and visual effort.  The data collection was done 
via a video camera and eye-tracking equipment. Based on the 
research questions presented above, four detailed null hypothe-
ses based on each of the three dependent variables are given 
below.  

 Ha: There is no significant difference in accuracy between 
C++ and Python programs for overview and bug finding 
tasks.  

 Ht: There is no significant difference in time between C++ 
and Python programs for overview and bug finding tasks. 

 



 Hve: There is no significant difference in visual effort be-
tween C++ and Python programs for overview and bug 
finding tasks.  

 He: There is no significant difference between novices and 
non-novices in terms of accuracy, time, or visual effort, for 
C++ and Python programs for overview and bug finding 
tasks.  

Previous work has shown that visual attention triggers mental 
processes and that visual effort is directly linked to cognitive 
effort [Duchowski 2003]. It has also been shown that processing 
of visual information occurs during fixations—prolonged gazes 
on a fixed locations, whereas no such processing occurs during 
saccades—time between fixations [Duchowski 2003]. We used 
a Mirametrix S2 eye tracker for this study, which records fixa-
tions as well as screen-capture audio/video. It is a video-based 
binocular remote eye tracker with a 60Hz capture rate and 0.5 to 
1.0 degrees of average accuracy. 

2.1 Programs, Tasks, and Stimuli 

We chose simple code snippets as stimuli that contained funda-
mental programming concepts such as if statements, un-nested 
loops, arrays, and basic input and output to screen. We wanted 
the subjects to complete the study in a short time frame of less 
than 15 minutes to avoid any issues with fatigue. A total of ten 
stimuli (five in C++ and five in Python) were used. Each stimu-
lus falls into one of two task categories: overview or find bugs. 
See Table 1 for an overview of the tasks used. A replication 
package is available at http://www.csis.ysu.edu/~bsharif/etra14. 
Each Python stimulus was shorter than its C++ counterpart due 
to the inherent nature of the language.  Figure 1 shows an exam-
ple of one code snippet shown to subjects, in both languages.  
Font size was kept the same for each task across C++ and Py-
thon and was chosen such that the eye tracker could distinguish 
between each line of code. Tasks were presented to subjects as 
follows. 

Overview task:  “Describe accurately and completely what the 
code does in your own words.  You may also state the output 
if possible” 
Find Bug task: “State the line number(s) that the logical error 
is located on.  Describe in words what the error is and how 
you would go about fixing it” 

2.2 Dependent Variables  

Accuracy refers to whether subjects answered the task correctly 
and was scored from 1 (completely wrong) to 5 (fully correct). 
A systematic rubric for assessing the answers was defined for 
both find-bug and overview tasks and is provided with the repli-
cation package. Time refers to the number of milliseconds spent 
answering each task.  Visual Effort is measured by fixation dura-
tion and number of fixations on each area of interest (AOI). The 

first two measures for visual effort are defined for both overview 
and find-bug tasks. The latter two are for find-bug tasks.  

 Fixation Count (TotalFC) – Total number of eye fixations 
on the entire stimulus 

 Fixation Duration (TotalFD) – Total time (ms) of all fixa-
tions on the entire stimulus 

 Fixation Rate on Buggy Line(s) (FRBugLine) – Total num-
ber of eye fixations on the lines of code. 

 Fixation Duration on Buggy Line(s) (FDBugLine) – Total 
time (ms) of all fixations on the buggy lines of code. 
 

A higher fixation count, duration, and fixation rate indicates 
more effort exerted by subjects to solve the task.  For overview 
tasks, the subject reads the entire code to figure out what it does.  
For find-bug tasks, the subject reads a code description and then 
reads the code to determine where it does not meet the descrip-
tion.  Even though both tasks involve reading, it is expected that 
the method of reading is different between the two tasks. 

2.3 Participants 

The subject pool consisted of a mix of 38 undergraduate and 
graduate students from Youngstown State University, recruited 
from beginning and advanced programming and problem solv-
ing courses. Participation was voluntary and no compensation 
was provided. Subject ages ranged from 18 to 45 years. Each 
subject was assigned to the C++ or Python group and classified 
as novice or non-novice based on their experience as indicated 
in answers to a background questionnaire administered one 
week prior to participation. There were 25 participants in the 
C++ group and 13 in the Python group, due to fewer program-
ming and problem solving courses taught with Python as the 
primary language. All subjects had normal vision. Some wore 
contacts or corrective lenses but this did not affect the measure-
ments of the eye tracker.  

2.4 Study Procedure and Instrumentation 

The study was conducted in accordance with IRB policies and 
procedures at a dedicated Usability Lab. On the day of the study, 
subjects were informed that the purpose of the study was to un-
derstand how programmers debug and comprehend source code. 
They were seated approximately 65 cm away from the screen. 
Before viewing a task, subjects were presented with a screen 
giving instructions on what the upcoming task was.  The two 
overview tasks were presented first (in a random order) followed 
by the three find-bug tasks (in a random order).  Subjects did not 
interact with the keyboard or mouse and all answers were col-
lected verbally.  A short post questionnaire collected data about 
question difficulty, clarity, time needed, and familiarity with the 
tasks.   

Table 1:  Overview of tasks and stimuli used in the study.  The bugs were located on the following lines given in parentheses: B1(4 and 7), B2(5), and B3(3) 
for C++ and B1(2 and 5), B2(3), and B3(3) for Python 

Task 
ID 

Task  
Category 

Program 
Name  

Program Description Font Size 
(pt) 

LOC in 
C++ 

LOC in 
Python 

O1 Overview Rounding Prints Round down 5 times 
Prints Round up 6 times 

31 12 7 

O2 Overview Factorial Find the factorial of the number input 27 13 12 
B1 Find Bug Age Prints an appropriate statement based on 

entered age 
32 10 8 

B2 Find Bug Count by 5 Count by 5 from the entered number 10 
times 

34 9 6 

B3 Find Bug Print array Print all items in an array 32 5 4 



 
 

Figure 1: Stimulus B1 for Python (left) and C++ (right) with the program specification shown on top. 

3 Experimental Results  

The collected data consisted of a single screen capture video and 
a sequence of raw eye fixations in XML format for each subject. 
Some records had to be discarded due to technical and data in-
tegrity issues. Video and fixations were recorded continuously 
over all stimuli, so we defined task boundaries and AOIs a pos-
teri using a tool built in Visual Basic .NET. This tool allowed us 
to define task boundaries as well as measure fixation counts and 
total fixation duration within each AOI. The tool is freely avail-
able at https://github.com/seresl/EyeAnalyzer. Descriptive statis-
tics are shown in Figure 2 across all tasks cumulatively. Data 
from two participants was lost due to technical difficulties and 
data from the first stimulus had to be thrown out for two subjects 
due to user error.  A total of 38 participant data records were 
retained and used. To compare results between groups, we used 
a linear mixed-effects regression model (that works well on 
unbalanced data) as well as a Mann-Whitney non-parametric 
test. 

3.1 Accuracy, Time and Visual Effort 

The two rows in Table 2 present the results for accuracy and 
time using the non-parametric Mann Whitney test. The median 
accuracy of the C++ group is slightly higher compared to the 
Python group. With respect to total accuracy for all the five 
tasks, the results indicate no difference between C++ and Py-
thon. The same can be said about the total time for all five tasks. 
This indicates that we cannot reject null hypotheses Ha and Ht.  
We also ran the test on individual task categories.  This also did 
not uncover any significant differences.  The linear mixed-
effects regression test did not yield significant or interesting 
results.  The four rows in Table 3 present results for the fixation 
counts, fixation durations, and fixation rate and duration on bug-
gy lines (for bug tasks).  These are shown combined for all five 
tasks.  There is no significant difference for fixation counts and 
fixation durations between C++ and Python.  However, we did 
find a significant difference (p-value=0.036) between the fixa-
tion rate on buggy lines of code (when looking at all three bug 
related tasks) between C++ and Python.   

A linear mixed-effects regression model was also created along 
with a further breakdown analysis on each of the three bug tasks.  
This regression model confirms significance for the fixation rate 
on buggy lines of code (p-value =0.043) and also shows that the 
first find-bug task (B1) resulted in a difference between C++ and 
Python groups.  However, no significant difference was found 
for fixation durations on buggy lines of code.  We can only re-
ject null hypothesis Hve with respect to the rate at which subjects 
fixate on buggy lines of code.  With respect to B1, the fixation 
rate for Python (mean: 0.347) was higher than the fixation rate 

for C++ (mean: 0.286).  This means that the C++ group had 
fewer eye fixations on the buggy line of code compared to the 
Python group.  See Figure 1 for the two B1 task programs as 
shown to the subjects. 

3.2 Secondary Factor Interactions 

We also wanted to determine if there were any interactions be-
tween subject ability: novice and non-novice on the results.  
There were 17 novices and 8 non-novices in the C++ group.  
The Python group had 10 novices and 3 non-novices.  We again 
employed a linear mixed-effects regression model, using two 
explanatory variables: programming language (C++, Python) 
and ability level (novice, non-novice). The test found statistical-
ly significant differences between novices and non-novices in 
accuracy of bug tasks (p-value=0.002, st. error=0.412, t= 2.032), 
with non-novices performing 1.4 times better than novices. 
There was also a significant difference for the B1 find-bug task 
between C++ and Python with respect to novices (p-
value=0.038) for the visual effort measure FRBugLine. Novices 
tend to have a higher fixation rate for Python compared to C++ 
on buggy lines of code in the B1 task. Within the C++ group, 
there is a difference (p-value=0.04) between novices and non-
novices with respect to the fixation duration on buggy lines of 
code for find-bug task B1. Also, the accuracy of find-bug tasks 
were higher for the Python group. Among novices, the gap be-
tween find-bug task accuracy for C++ and Python was almost 
non-existent. Based on the above results, we can reject the null 
hypothesis He which means that there is a significant difference 
between novices and non-novices with respect to accuracy and 
fixation rate, and fixation duration on buggy lines for find-bug 
tasks.   

Table 2: Un-paired Mann-Whitney p-values (alpha=0.05) for overall (all 
tasks) accuracy and time 

Dependent Variables U p-value (2-tailed) 

Accuracy 186.500 0.466 

Time 158.000 0.902 
 

Table 3: Un-paired Mann-Whitney p-values (alpha=0.05) for overall (all 
tasks) fixation counts, fixation durations, fixation rate on buggy 

lines and fixation duration on buggy lines. 

Dependent Variables U p-value (2-tailed) 

TotalFC  172 0.782 

TotalFD 169 0.854 

FRBugLine (for find-bug tasks) 94 0.036 * 

FDBugLine (for find-bug tasks) 124 0.242 



 
Figure 2: Accuracy, time, fixation counts and fixation duration box plots for C++ and Python 

4 Discussion 

Total accuracy for all tasks was higher for the C++ group.  This 
was true for both novices and non-novices.  With respect to 
time, the Python group took longer to solve all the tasks.  Non-
novices took longer in Python than novices.  In the C++ group, 
novices took longer than non-novices.  Novices tend to have 
higher total fixation counts in C++ compared to Python whereas 
non-novices had lower total fixation counts in C++.  The total 
fixation duration for C++ and Python was almost same for non-
novices whereas for novices, C++ had a slightly higher total 
fixation duration.  For fixation rate on all the buggy lines of 
code, novices had a lower fixation rate compared to non-novices 
for Python. Among novices, Python had a higher fixation rate 
than C++.  Finally, for fixation duration on all buggy lines of 
code, non-novices had mostly same fixation durations in both 
C++ and Python however, novices had higher fixation durations 
in Python.    

It is possible that the non-novices were more accustomed to C++ 
and thus took longer in Python or this could also be attributed to 
the choice of the programs and the smaller Python sample.  A 
larger study is called for to mitigate these threats.  We now re-
visit the research questions posed in the Introduction. We did not 
find any significant differences in accuracy and time between 
C++ and Python (RQ1). We did find a difference in visual effort 
between C++ and Python but only with respect to how often 
subjects fixate on buggy lines of code (RQ2).  There was also a 
significant difference in eye gaze behavior between novices and 
non-novices across C++ and Python (RQ3). However, given all 
of these results combined, we cannot yet recommend one lan-
guage over the other for comprehending simple code such as 
that seen in this study. This study only represents a first step in 
understanding learning differences between languages.   

5 Related Work  

There are no eye tracking studies comparing C++ and Python 
source code.  Very recently, Hansen et al. [Hansen et al. 2013] 
look at what parts of Python code are found most difficult.  
However, they do not compare Python and C++ and the results 
of the eye-tracking part of the Python study are yet to be pub-
lished. Crosby and Stelovksy explored the way subjects viewed 
an algorithm and discovered that the eye movements of experts 
and novices differ in the way they looked at English and Pascal 
versions of an algorithm [Crosby and Stelovsky 1990].  Bed-
narik et al. investigated the visual attention of experts versus 
novices in debugging code [Bednarik and Tukiainen 2008].  No 
significant correlation was found between patterns of eye 
movement and performance in using the debugger. Uwano et al. 
also studied eye gaze patterns of five individuals while they 
were detecting defects in source code [Uwano et al. 2006].  This 
study was replicated by [Sharif et al. 2012].  Recently, [Binkley 
et al. 2013] study the impact of identifier style (i.e., camel case 

or underscore) on code reading and comprehension using an 
eye-tracker and found camel case to be an overall better choice.   

6 Conclusions and Future Work 

We present the results of an empirical study looking at accuracy, 
speed, and visual effort of subjects reading short C++ and Py-
thon code to complete overview and bug finding tasks.   We 
found no statistical difference between C++ and Python with 
respect to accuracy and time, but did find significant difference 
between C++ and Python for fixation rate on buggy lines of 
code for find-bug tasks. As future work, we are conducting an-
other study focusing on the main differences in the programming 
constructs of C++ and Python done using the within-subjects 
design, where each subject sees both C++ and Python code.  
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