
Predicting Tags for StackOverflow Questions

Sebastian Schuster Wanying Zhu
{sebschu,wanyingz,yiycheng}@stanford.edu

Yiying Cheng

Abstract

We present a system that is able to au-
tomatically assign tags to questions from
the question-answering site StackOver-
flow. Our system consists of a program-
ming language detection system and a
SVM using content-based features. When
testing on an unseen test set, we achieve a
mean F1 of 0.41 on this task.

1 Introduction

The question-answering site StackOverflow al-
lows users to assign tags to questions in order to
make them easier for other people to find. Fur-
ther experts on a certain topic can subscribe to tags
to receive digests of new questions for which they
might have an answer. Therefore it is both in the
interest of the original poster and in the interest
of people who are interested in the answer that a
question gets assigned appropriate tags.

StackOverflow allows users to manually assign
between one and five tags to a posting. Users are
encouraged to use existing tags that are suggested
by typing the first letter(s) of a tag but they are
also allowed to create new ones, so the set of pos-
sible tags is infinite. While the manual tagging by
users generally works well for experienced users,
it can be challenging for inexperienced users to
find appropriate tags for their question and by let-
ting users add new tags it is likely that different
users use different orthographic versions of tags
that mean the same thing such as “php5” and “php-
5”. For these reasons it is desirable to a have a sys-
tem that is able to either automatically tag ques-
tions or to suggest relevant tags to a user based on
the question content.

In this project we are developing a predictor that
is able to assign tags based on the content of a
question. More formally, given a question q con-
taining a title consisting of n words a1, ..., an and

a body consisting of m words b1, ..., bm, we want
to assign 1 ≤ k ≤ 5 tags t1, ..., tk from a limited
list of tags T .

2 Related Work

2.1 Automatic Content Tagging

There has been some work done on automatic tag-
ging of web content. Mei et al. (Mei and Zhang,
2008) trained language models using web docu-
ment content and tag logs to suggest tags to users
of the social bookmarking service del.icio.us.
Sood et al. (Sood et al., 2007) developed a tag
suggestion system for blog posts using informa-
tion retrieval methods that was based on finding
similar blog posts and suggesting some of their
tags. Liu et al. (Liu et al., 2011) modified the IBM
Model 1 word alignment algorithm that is predom-
inantly used to train machine translation systems
to generate alignments between short descriptions
and texts and used this information to suggest new
tags. Stanley et al. (Stanley and Byrne, 2013)
propose a Bayesian probabilistic model to predict
tags for StackOverflow posts. For each tag they
compute an activation score given the words in
the title and the body that mainly depends on co-
occurrence statistics.

2.2 Programming Language Detection

Very little work has been done so far on the
automatic detection of programming languages.
GitHub developed a library1 that is able to detect
programming languages but it mainly relies on the
file extension and only uses a probabilistic model
for ambiguous cases such as files ending in “.h”
that could be C, C++ or Objective-C header files.
Instead of using a multi-class Naive Bayes Classi-
fier, Klein et al. (Klein et al., 2011) collect some
specific statistics of code in different languages
such as statistics on certain keywords or punctu-

1https://github.com/github/linguist



Figure 1: Distribution of the number of tags per
document

ation marks to predict the used programming lan-
guage.

3 Data

We use the data provided for the Kaggle compe-
tition on the automatic tagging of StackOverflow
posts2. The data set consists of 6,034,196 Stack-
Overflow questions. Each question consists of a
title, the HTML markup of the question body and
the tags of the question. As working with such a
huge data set entails many computational limita-
tions, we decided to use only a subset of the data.
First, we reduced the tag space by only consid-
ering documents tagged with the most 1,000 fre-
quent tags. From this data, we sampled 529,588
documents for our training set, 1,000 documents
for our development set and 5,321 documents for
our final evaluation set.

Table 1 shows the most frequent tags in our cor-
pus. Here we can see that the most common tags
are almost all names of programming languages.
Figure 1 shows the distribution of the number of
tags per post. Here we can see that more than 50%
of the posts have either two or three tags.

c#, java, php, javascript, android, jquery, c++,
python, iphone, asp.net, mysql, html, .net, ios,
objective-c, sql, css, linux, ruby-on-rails,
windows

Table 1: 20 most frequent tags

2http://www.kaggle.com/c/facebook-recruiting-iii-
keyword-extraction

4 Methods

4.1 Evaluation

We evaluate our system by computing the mean
recall, mean precision and mean F1 over all doc-
uments, i.e. we compute recall, precision and F1
for every document and then take the mean of all
these values.

4.2 Baseline

As a baseline, we implemented a Naive Bayes
classifier trained on the words in the title of a ques-
tion. We tokenize the title using the sentiment-
aware tokenizer by Christopher Potts3 that is well
suited for tokenizing web text with a lot of punc-
tuation. For new questions, we assign the 3 (the
median number of tags per question) most proba-
ble tags. By doing that we get a precision of 0.33
and a recall of 0.45.

4.3 Programming Language Detection

Motivated by the observation that a lot of posts
contain code snippets and that the programming
language is often used as a tag, we implemented
a programming language detection system. We
identified a list of 28 very common tags refer-
ring to programming languages. Then, we went
through our training data and considered all ques-
tions with exactly one of these tags. Code snippets
are encapsulated in specific HTML-markup so it
is easy to extract only code snippets from a ques-
tion. We tokenize these snippets by splitting on a
character level for all non-alphabetic strings and
on a word level for alphabetic strings, so the string
“int count=0” would be split into “int”, “count”,
“=”, “0”. Then we filter out all tokens that oc-
cur less than 20 times in our corpus based on
the assumption that these are variable or function
names or parts of comments that contain little in-
formation on which programming language was
used. The remaining tokens are then used to train a
multinomial Naive Bayes classifier that can return
the most probable programming language given a
code snippet.

4.4 Content-Based Classifier

As a second system, we implemented a SVM
based classifier. We treat our problem as a binary
classification problem that predicts for each tag
t ∈ T whether it is a tag for the given document

3http://sentiment.christopherpotts.net/



or not. We construct our training examples the
following way: For each observed tag-document
pair, we compute a feature vector and use these
examples as positive training examples. Addition-
ally, we sample for each document x random tags,
where x is the number of tags assigned to the doc-
ument and compute again a feature vector for each
of these tag-document pairs and use them as neg-
ative training examples. By doing that we get the
same number of positive and negative training ex-
amples. These examples are then used to train a
linear SVM classifier4. To assign tags to a new
document, we go through all tags and for each tag
we compute the tag-document feature vector and
let our classifier determine whether the given tag
is a tag for the document or not. In case more than
N tags get assigned to a document, we assign the
N ones having the highest decision function value.
We treat N as one of our hyperparameters.

We preprocess all documents by 1) stripping
the code fragments and any HTML code from the
question body and 2) by tokenizing the title and
body. In order to tokenize we use a modified ver-
sion of the sentiment-aware tokenizer that does not
split frequent tags such as c#, c++ or .net.

We implemented the following six features for
a document-tag pair:

• Exact Title: Is the tag one of the words in the
title.

• Exact Body: Is the tag one of the words in
the body.

• Relaxed Title and Relaxed Body: Are all to-
kens that are obtained by splitting tags at hy-
phens contained in the title resp. body. (e.g.
the tag machine-learning would be contained
in Which machine learning algorithm should
I use?)

• Title PMI and Body PMI: We loop over all
words in the title resp. body and compute
the sum over all pointwise mutual informa-
tion (PMI) values for a word-tag pair. PMI is
defined as following:

PMI(t, w) = log
p(t, w)

p(t)p(w)

We estimate the probabilities needed to com-
pute the PMI by computing the maximum

4We use the LinearSVC implementation in scikit-learn.

10 50 100 500 1000 5000 10000

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

Learning Curve

Training Examples

F
1

Train

Dev

Figure 2: Learning Curve on training and develop-
ment set.

likelihood estimates of the training data. In
case we did not observe a certain document-
tag pair, we set its PMI to 0.

4.5 Hybrid System
Finally, we combine the two described systems
to create a hybrid system. For the hybrid system
we predict the programming languages of all code
snippets in a question (if there are some present)
and up to N tags using the SVM described above.
The output of the hybrid system is then the union
of the two tag sets that were output by the respec-
tive systems.

5 Results

5.1 Training Set Size
Given that we have a model with only six features,
we assumed that we need only a small fraction of
the training data to obtain a good model. Figure 2
shows the learning curve of our model. We can see
that our assumption was right and by using only 50
training examples we already get our highest F1-
score on the development set. For this reason we
use only 50 training examples for all further ex-
periments. Note that while we use only 50 train-
ing examples to train our SVM, we still use the
entire training set to train our code classifier and
to estimate the PMI values.

5.2 Maximum Number of Tags
We observed that in many cases our predictor pre-
dicted too many tags. As described above, we use
the N tags having the highest decision function
value. Figure 3 shows the influence of varying N
on the mean F1 on the development set. As we can



Figure 3: Influence of the maximum number of
predicted tags on the performance of our model
on the development set.

see in the figure, we get the best results by setting
N to 3, why we used this parameter for all further
experiments.

5.3 Feature Selection

In order to check whether all our features actually
improve our system, we did an ablation test on the
development set. We noted that leaving out any
feature lowered the F1 score. For this reason we
included all our features in our final model. For
the sake of brevity, we omitted the exact results of
the ablation test, but it showed that especially the
PMI Title feature was very important as leaving it
out led to a drop of 0.04 of the F1 score (0.381 vs.
0.42).

5.4 Final Results

Figure 4 shows the results of all our models on the
held-out test set. We can see that in terms of pre-
cision all our models outperform the baseline. We
can also see that the programming language pre-
dictor is able to predict a tag with a remarkably
high precision. In terms of recall our SVM-based
model and our hybrid model outperform the base-
line and in terms of F1 we see a clear improve-
ment of using our SVM based and an even further
improvement using our hybrid system. Our test
results are also comparable to the results on our
development set suggesting that we chose reason-
able values for the hyper parameters.

Figure 4: Results of the different models on the
held-out test set.

6 Discussion

We presented a fairly simple model that is able to
predict StackOverflow Tags. While a F1 of around
0.4 indicates that there is still a lot of room for
improvement, our hybrid system clearly outper-
forms our Naive Bayes baseline and also the solely
content-based or the solely code-based systems.
One very nice property of our model is that it re-
quires very little training data compared to classi-
cal text classification models and we only need one
model compared to a model for every tag if we did
a one-vs-all classification for all tags. However,
one major drawback we noted is that we need to
compute a feature vector for each document-tag
pair, so given our tag set size of 1,000 we have to
compute 1,000 feature vectors to make one predic-
tion which turns out to be very slow compared to
one feature vector needed for a classical one-vs-all
text classification model that uses the same bag-of-
words or tf-idf feature vector for all 1,000 classifi-
cations. Nevertheless, we only use 6 features and
a very simple model which at least results in very
fast predictions once we computed all the feature
vectors.

By varying the number of predicted tags as
shown in Figure 3 we also showed that by only
predicting 10 tags for each question we achieve a
recall of around 0.8. Considering that one possible
application of our system is providing tag sugges-
tions to a user, this indicates that our model would
be very well suited for that task as choosing be-
tween 10 suggestions seems to be easily accom-
plishable by users.

Compared to the current leaderboard on the
Kaggle competition, our results seem to be very



bad, as other teams seem to achieve F1 scores be-
yond 0.75. However, we noted that around 75% of
the test data are also contained in the training data
so one could easily achieve a mean F1 of 0.75 by
just looking up the questions in the training data.
As we split the original training data into non-
overlapping train, development and test sets, our
numbers should give a better estimate on how well
such a model actually performs on unseen data.

6.1 Error Analysis
Given our results, it is clear that there are still er-
rors that remain. We identified the following three
common error categories.

• Our system predicts too many/too few tags:

This problem is caused by the fact that our
SVM tends to predict too many tags and we
use a cut-off for the maximum number of tags
that get predicted. As a user can choose be-
tween 3 and 5 tags and we typically predict
3 tags and potential programming-languages,
we only get that right in the majority of the
cases, but not if the user specified less or
more tags. An alternative to using a fixed
number would be to predict tags whose deci-
sion function value is above a certain thresh-
old, but by examining some examples, there
does not seem to be a threshold that would
give an improvement over predicting a fixed
number of tags.

• Predicted tag is contained in the title or body
but is not a real tag to the question:

In some cases we observed that the tag is
contained in the question title or body but
the user did not assign that tag. This error
seems very hard to fix, as generally this fea-
ture is a good indicator for a tag-document re-
lation. However, it seems that in many cases
the wrongly assigned tag is actually a valid
tag for the document and it is just the case
that the user did not use it. Thus it is still a
valid prediction although it does not conform
to the gold standard.

• The detected programming language is not a
real tag:

This error occurs quite frequently, as people
often use more specific tags such as jquery
compared to javascript. However, if we as-
sume that the number of tags is not limited,

then assigning this additional tag should not
harm the user experience as if the used pro-
gramming language is really javascript, then
this seems to be an appropriate tag.

6.2 Conclusion and Outlook
In this paper we described a simple classifier that
has the capability of predicting tags to StackOver-
flow questions given only the question title and
body. Besides engineering more sophisticated fea-
tures, future work should focus on optimizing the
runtime of our model, as it is currently too slow to
be used in practice. We also assume that incorpo-
rating more data to estimate the PMI values, could
further improve recall as it seems that our model
heavily relies on that feature. Further, one might
want to investigate whether co-occurence statistics
of tags could further improve the model, as there
are a lot of tag pairs such as javascript and jquery
that co-occur very often.

References
David Klein, Kyle Murray, and Simon Weber. 2011.

Algorithmic programming language identification.
CoRR, abs/1106.4064.

Zhiyuan Liu, Xinxiong Chen, and Maosong Sun. 2011.
A simple word trigger method for social tag sugges-
tion. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
1577–1588. Association for Computational Linguis-
tics.

Qiaozhu Mei and Yi Zhang. 2008. Automatic web
tagging and person tagging using language models.
In Advanced Data Mining and Applications, pages
741–748. Springer.

Sanjay Sood, Sara Owsley, Kristian J Hammond, and
Larry Birnbaum. 2007. Tagassist: Automatic tag
suggestion for blog posts. In ICWSM.

Clayton Stanley and Michael D Byrne. 2013. Predict-
ing tags for stackoverflow posts. In Proceedings of
ICCM 2013.


