
Oops, my tests broke the build: An analysis of Travis CI builds
with GitHub

Continuous Integration (CI) has become a best practice of modern software development.

At present, we have a shortfall of insight into the testing practices that are common in CI-

based software development. In particular, we seek quantifiable evidence on how central

testing really is in CI, how strongly the project language influences testing, whether

different integration environments are valuable and if testing on the CI can serve as a

surrogate to local testing in the IDE. In an analysis of 2,640,825 Java and Ruby builds on

Travis CI, we find that testing is the single most important reason why builds fail.

Moreover, the programming language has a strong influence on both the number of

executed tests, their test run time and proneness to fail. The use of multiple integration

environments leads to 10% more failures being caught at build time. However, testing in

the CI does not seem to be a good surrogate for running tests in the IDE. To facilitate

further research on Travis CI with GitHub, we introduce TravisTorrent.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1984v1 | CC-BY 4.0 Open Access | rec: 22 Apr 2016, publ: 22 Apr 2016



Oops, My Tests Broke the Build:
An Analysis of Travis CI Builds with GitHub

Moritz Beller
Delft University of Technology,

The Netherlands
m.m.beller@tudelft.nl

Georgios Gousios
Radboud University Nijmegen,

The Netherlands
g.gousios@cs.ru.nl

Andy Zaidman
Delft University of Technology,

The Netherlands
a.e.zaidman@tudelft.nl

ABSTRACT
Continuous Integration (CI) has become a best practice of modern
software development. At present, we have a shortfall of insight
into the testing practices that are common in CI-based software de-
velopment. In particular, we seek quantifiable evidence on how
central testing really is in CI, how strongly the project language
influences testing, whether different integration environments are
valuable and if testing on the CI can serve as a surrogate to lo-
cal testing in the IDE. In an analysis of 2,640,825 Java and Ruby
builds on TRAVIS CI, we find that testing is the single most impor-
tant reason why builds fail. Moreover, the programming language
has a strong influence on both the number of executed tests, their
test run time and proneness to fail. The use of multiple integra-
tion environments leads to 10% more failures being caught at build
time. However, testing in the CI does not seem to be a good surro-
gate for running tests in the IDE. To facilitate further research on
TRAVIS CI with GITHUB, we introduce TRAVISTORRENT.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
Tools

General Terms
Experimentation, Measurement, Theory, Verification

Keywords
Continuous Integration, Travis CI, GitHub, TravisTorrent

1. INTRODUCTION
Continuous Integration (CI) is the software engineering practice

in which developers not only integrate their work into a shared
mainline frequently, but also verify the quality of their contribu-
tions continuously. CI facilitates this through an automated build
process that typically includes (developer) tests [1] and various
static analysis tools that can be run in different integration envi-
ronments [2]. Originally proposed as one the twelve Extreme Pro-
gramming (XP) practices in 1997 [3], CI has become a universal

This paper is currently under peer review in a Software Engineering venue.
This is a pre-print copy.

industry and Open-Source Software (OSS) best practice since, of-
ten used outside the context of XP [4, 5].

A full CI build comprises 1) a traditional build and compile
phase, 2) a phase in which automated static analysis tools (ASATs)
such as FINDBUGS and JSHINT are run [6, 7], and 3) a testing
phase, in which unit, integration, and system tests are run. If any of
these three phases fails, the whole CI build is typically aborted and
regarded as broken [8]. Researchers have explored the compile and
ASAT phase of CI [6, 9]; yet, we still lack a quantitative empirical
investigation of the testing phase to gain a holistic understanding of
the CI process. This is surprising, as testing stands central in CI [2]
and a better understanding is the first step to further improve both
the CI process and the build tools involved.

In this paper, we study CI-based testing in the context of TRAVIS
CI, an OSS CI as-a-service platform that tightly integrates with
GITHUB. While there has been research on aspects of TRAVIS
CI [10, 11], we lack an overarching explorative study to quantita-
tively explore the CI domain for testing from the ground up. More-
over, as accessing data from TRAVIS CI and overlaying it with
GITHUB data involves difficult technicalities, researchers would
profit from making this promising data source more accessible.

Our explorative research into CI is steered by five concrete propo-
sitions inspired from and raised by previous research:
P1. The use of CI is a widespread best practice. CI has become an
integral quality assurance practices [12]. But just how widespread
is its use in OSS projects? One study on TRAVIS CI found an
adoption rate of 45 to 90% [10]. This seems surprisingly high given
it was measured in 2013, when TRAVIS CI was still very new, and
also based on only a small subset of projects.
P2. Testing is central to CI. Two studies on the impact of compila-
tion problems and ASATs at Google found that missing dependen-
cies are the most important reason for builds to break [6, 9]. How-
ever, these studies have not considered the testing phase of CI. To
gain a complete picture of CI, we need to measure the importance
and impact of the testing phase in a CI build process.
P3. Testing on the CI is language-dependent. While CI is a gen-
eral purpose practice for software development projects, the pro-
gramming languages used in CI have been shown to differ, e.g. in
terms of programming effort [13]. As such, CI observations for
one language might not generalize to other languages. A cross-
language comparison might unveil which testing practices of a cer-
tain language community and culture might benefit more from CI,
in terms of shorter run time or fewer broken builds.
P4. Test Integration in different environments is valuable [12,
Chapter 4]. Building and integrating in different environments
multiple times is time- and resource-intensive. Consequently, it
should deliver additional value over a regular one-environment in-
tegration strategy. We currently lack data to support this claim.
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P5. Testing on the CI is a surrogate for testing in the IDE for get-
ting quick feedback. One of the core ideas of developer testing is to
provide quick feedback to developers [14,15]. Yet, in a recent study
on how 416 software developers test in their Integrated Develop-
ment Environments (IDEs) [16], we could not explain the “testing
paradox”: developers spent a substantial 25% of their time working
on tests, yet rarely executed them in their IDE. We received anec-
dotal evidence that, instead, developers might offload running tests
to the CI. However, it is unclear whether the CI environment is in-
deed a suitable replacement for running tests locally; in particular,
while Fowler claims the CI provides quick feedback [2], the poten-
tial latency that CI introduces in the test feedback cycle needs to be
evaluated.

To guide our investigation of propositions P1-P5, we derived a
set of research questions, presented below along with the proposi-
tions they address:

RQ1 How common is the use of TRAVIS CI on GitHub? (P1)

RQ2 How central is testing to CI? (P2, P5)
RQ2.1 How many tests are executed per build?
RQ2.2 How long does it take to execute tests on the CI?
RQ2.3 How much latency does CI introduce in test feedback?

RQ3 What causes builds to break? (P3, P4, P5)
RQ3.1 How often do tests fail?
RQ3.2 How often do tests break the build?
RQ3.3 Are tests a decisive part of CI?
RQ3.4 Does integration in different environments lead to differ-

ent test results?
Paper Structure. In the following, we first give our research ques-
tions and show their connection to P1-P5. We then provide an
overview of related research on CI and describe TRAVIS CI, in-
troducing a build status nomenclature in Section 2. In Section 3,
we first describe our high-level study design and then dive into the
technical challenges that a combination of TRAVIS CI and GITHUB
brings with it. Section 4 gives our results to RQs 1-3, and Section 5
connects them with P1-P5. Finally, we draw conclusions and out-
line implications of our findings (Section 6).

2. BACKGROUND
In this section, we outline related CI work and build tools. We

also give an overview and technical description of TRAVIS CI.

2.1 Related Work
Introduced as one of the twelve best practices of extreme pro-

gramming in 2000 [3], CI is a relatively new trend in software en-
gineering. In their 2014 systematic review, Ståhl and Bosch pro-
vided the most recent overview over CI practices and how they
differ in various settings of industrial software development [17].
Of particular interest to us is their analysis of what is considered a
failure in a CI build. The most commonly observed stance is that
if any test fails during the build, then the build as a whole is failed
(e.g., [8, 18]). Ståhl and Bosch also found that build failures due to
test failures are sometimes accepted, however: “it is fine to permit
acceptance tests to break over the course of the iteration as long as
the team ensures that the tests are all passing prior to the end of the
iteration” [19].

A case study at Google investigated a large corpus of builds in
the statically typed languages C and Java [9], uncovering several
patterns of build errors. While the study is similar in nature to
ours, it focused on static compilation problems and spared out the
dynamic execution part of CI, namely testing. Moreover, it is un-
known whether their findings generalize to a larger set of OSS.

Vasilescu et al. examined whether a sample of 223 GITHUB

Figure 1: TRAVIS CI’s UI for an OSS project (WATCHDOG,
[23]).

projects in Java, Python, and Ruby used TRAVIS CI [10]. While
more than 90% had a TRAVIS CI configuration, only half of the
projects actually used it. In follow-up research, Vasilescu et al.
found that CI, such as provided through TRAVIS CI, significantly
improves their definition of project teams’ productivity, without ad-
versely affecting code quality [11].

Pinto et al. researched how test suites evolve [20]. Our work is
different in that we observe real test executions as they were run
in-vivo on the CI server, while Pinto performed their own post-
mortem, in-vitro analysis. Their approach offers a finer control
over the produced log data, yet it bears the risk of skewing the
original execution results, for example because a dependency is not
available anymore [20].

Pham et al. investigated the testing culture on social coding sites.
In particular, they note that to nurture a project’s testing culture,
the testing infrastructure should be easy to set up. Their interviews
furthermore lead to the observation that TRAVIS CI “arranges for
low barriers and easy communication of testing culture” [5]. By
analyzing build logs, we hope to be able to see how many projects
make use of this infrastructure.

With TRAVIS CI, a public and free CI service that integrates
tightly with GITHUB, we have the chance to observe how CI hap-
pens in the wild on a large basis of influential OSS projects.

Similar to TRAVIS CI, but typically setup and maintained by the
project themselves, are a number of other CI servers like CruiseC-
ontrol, TeamCity, Jenkins, Hudson, and Bamboo [21].

2.2 Travis CI
In this section, we provide an overview over TRAVIS CI.
Overview. TRAVIS CI is an open-source, distributed build ser-

vice that, through a tight integration with GitHub, allows projects
to build and run their CI procedures without having to maintain
their own infrastructure [22]. TRAVIS CI started in 2010 as an
open-source project and turned into a company in 2012. In August
2015, it supports 26 different programming languages including
Java, C(++), Scala, Python, R, and Visual Basic.1 Apart from the
community edition, free to use for OSS, TRAVIS CI also hosts a
paid service that provides non-public builds for private GITHUB
repositories. The Pro edition features a faster build environment.2

User View. Figure 1 showcases TRAVIS CI’s main User Inter-

1http://docs.travis-ci.com/user/getting-started/
2https://travis-ci.com/plans

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1984v1 | CC-BY 4.0 Open Access | rec: 22 Apr 2016, publ: 22 Apr 2016

http://docs.travis-ci.com/user/getting-started/
https://travis-ci.com/plans


Figure 2: Integration of TRAVIS CI on GitHub, displaying
build results in a pull request for multiple commits.

face for build number 518 in the OSS project TESTROOTS/WATCH-
DOG [23, 24].3 At marker 1©, we see the project name and build
status of its master branch. On the right hand side 2©, TRAVIS
CI shows which GIT commit triggered the build, its build status
(“passed”) along with information such as the overall build time
(7 minutes, 51 seconds). The description at 3© indicates that the
build was triggered by a pull request. Through link 4©, we can
retrieve the full history of all builds performed for this project. Un-
der 5©, we can see a lightly parsed and colorized dump of the log
file created when executing the build. By clicking 6©, developers
can trigger a re-execution of a build.

Build Setup. Whenever a commit to any branch on a TRAVIS
CI-enabled GITHUB repository is pushed, the latest commit of
said branch or pull request is automatically received by TRAVIS
CI through a GITHUB web hook and subsequently built. The re-
sult of this build is then displayed on GitHub, like the excerpt of the
pull request in Figure 2: Igor Levaja pushed the first two commits
separately, thereby triggering two passing TRAVIS CI builds 1©.
He then transferred the third and fourth commit in one single push,
leading to TRAVIS CI only building the latest 2©. If a build is run-
ning while a newer commit is pushed to the same branch, TRAVIS
CI immediately cancels the execution of the current build and starts
building the latest relevant commit. This seamless integration into
projects’ workflow caters for the popular pull request model [25]
and is supposedly key to TRAVIS CI’s popularity among GITHUB
projects.

TRAVIS CI users configure their build preferences through a top-
level file in their repository. This defines the language, the default
environments and possible deviations from the default build steps
that TRAVIS CI provisions for building the project. TRAVIS CI
currently only provides single-language builds, but it does support
building in multiple environments, e.g., different versions of Java.
For each defined build environment, TRAVIS CI launches one job
that performs the actual build work in this environment. If one
of these jobs breaks, i.e. the build execution in one build envi-
ronment exits with a non-successful status, TRAVIS CI marks the
whole build as broken. TRAVIS CI instills a maximum job runtime
of 50 minutes for OSS, after which it cancels the active job.

Build Life-cycle. Each job on TRAVIS CI goes through the
build steps depicted in the state machine in Figure 3: A CI build
always starts with the three infrastructure provisioning phases BE-
FORE_ INSTALL, INSTALL and BEFORE_SCRIPT. In CI phase 1©,
the TRAVIS CI job is initialized, either as a legacy virtual machine
like in step 5© in Figure 1 or as a new DOCKER container [26], the
GIT repository is cloned, additional software packages are installed,
and a system update is performed. If a problem occurs during these
phases, the job is marked as errored and immediately aborted. The
SCRIPT phase actualizes the build, for example for a Java MAVEN
project, TRAVIS CI calls mvn -B to build and test the applica-
tion, and for Ruby, it calls rake per default, CI phases ASAT and
test runs, 2© and 3©. The build phase can either succeed or fail,
denoted in a Unix-fashion non-zero return value from the SCRIPT
phase. The DEPLOY phase 4© is optional and does not influence the

3https://github.com/TestRoots/watchdog

Figure 3: TRAVIS CI build phases as a state machine.

build result.
TRAVIS CI pipes the console output from the different build

phases into the build log of the job, separated as so-called folds. For
example, the git.checkout is part of the BEFORE_INSTALL
phase in Figure 1. The output generated in the SCRIPT phase con-
tains the typical console output of build tools: build status, exe-
cution time, possible compilation problems, test executions, and
failures. Naturally, the format of this output depends on the actual
build and test framework used.

Build Status. TRAVIS CI features a canceled build status that
can occur in any phase and is triggered from the outside. We call
an errored or failed build more generally broken, opposed to a suc-
ceeded build.

REST API. Next to its normal user interface in Figure 1, TRAVIS
CI provides an unrestricted RESTful Web-API,4 using which data
from all publicly built OSS repositories can be queried. The API al-
lows us to conveniently access build-related information to perform
our deeper build analysis.

3. RESEARCH METHODS
In this section, we give a high-level overview of our research

design and describe our research methodology in detail.

3.1 Study Design
The main focus of this study is to evaluate how testing works in

the context of CI. We performed a purely quantitative study to ad-
dress our propositions, combining multiple data sources and RQs.
We use the GHTORRENT database [27] as a source of projects to
examine and apply filtering to select the most appropriate ones. The
results for RQ1 lead us to the projects we would analyze in RQs 2
and 3.

These remaining research questions require a deep analysis of
the project source code, process and dependency status at the job
level. Moreover, as we needed to examine test tool outputs, we re-
stricted our project search space to Ruby and Java. Both languages
are very popular on GITHUB (2nd and 3rd, respectively) and have a
strong testing tradition, as evidenced by the plethora of automated
testing tools available. Using the projects selected in the previous
step as a starting point, we filtered out those that are not written
in Ruby or Java and are not integrated with TRAVIS CI. Then, we
extract and analyze build information from TRAVIS CI build logs
and the GHTORRENT database, combining both data sources in the
newly implemented TRAVISTORRENT.

4https://api.travis-ci.org/
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3.2 Tools
In this section, we detail the tools we used to carry out our study.

Our data extraction and analysis pipeline is written in Ruby and
R. For replication purposes and to stimulate further research, we
created TRAVISTORRENT, which distributes our tools and data sets
publicly.5

TravisPoker. To find out which and how many projects on GitHub
use TRAVIS CI, we implemented TRAVISPOKER. This fast and
lightweight application takes a GITHUB project name as input (for
example, RAILS/RAILS), and finds out if and how many TRAVIS
CI builds were executed for this project.

TravisHarvester. We implemented TRAVISHARVESTER to ag-
gregate detailed information about a project’s TRAVIS CI build his-
tory. It takes as input a GITHUB project name and gathers general
statistics on each build in the project’s history in a CSV file. Asso-
ciated with each build entry in the CSV are the SHA1 hash of the
GIT commit, the branch and (if applicable) pull request on which
the build was executed, the overall build status, the duration and
starting time and the sub jobs that TRAVIS CI executed for the
different specified environments (at least one job, possibly many
for each build). TRAVISHARVESTER downloads the build logs for
each build for all jobs and stores them alongside the CSV file.

While both TRAVISPOKER and TRAVISHARVESTER utilize TRAVIS
CI’s Ruby client for querying the API,6 we cannot use its job log
retrieval function (Job:log) due to a memory leak7 and because
it does not retrieve all build logs. We circumvented these prob-
lems by also querying an undocumented Amazon Cloud server we
discovered that archives build logs.8

To speed up the process of retrieving thousands of log files for
each project, we parallelize our starter scripts for TRAVIS HAR-
VESTER with GNU PARALLEL [28].

Build Status Analyzer. To assess the status of the project at the
moment each build was triggered, we extract information from two
sources: the project’s GIT repository and its corresponding entry in
the GHTORRENT database. During this step we also perform the
build linearization described in Section 3.3.

BUILDLOG ANALYZER. BUILDLOG ANALYZER is a frame-
work that supports the general-purpose analysis of TRAVIS CI build
logs and provides dedicated Java and Ruby build analyzers that
parse build logs in both languages and search for output traces of
common testing frameworks.

The language-agnostic BUILDLOG ANALYZER reads-in a build
log, splits it into the different build phases (folds, see Section 2.2),
and analyzes the build status and runtime of each phase. The fold
for the SCRIPT phase contains the actual build and continuous test-
ing results. The BUILDLOG ANALYZER dispatches the automati-
cally determined sub-BUILDLOG ANALYZER for further examina-
tion of the build phase.

For Java, we support the three popular build tools MAVEN, GRA-
DLE, and ANT [29]. In Java, it is standard procedure to use JUNIT
as the test runner, even if the tests themselves employ other test-
ing frameworks, such as POWERMOCK or MOCKITO. Moreover,
we also support TESTNG, the second most popular testing frame-
work for Java. Running the tests of an otherwise unchanged project
through MAVEN, GRADLE and ANT leads to different, incompati-
ble build logs, with MAVEN being the most verbose and GRADLE
the least. Hence, we need three different parsers to support the
large ecosystem of popular Java build tools. As a consequence, the

5http://travistorrent.testroots.org
6https://github.com/travis-ci/travis.rb
7https://github.com/travis-ci/travis.rb/issues/310
8http://s3.amazonaws.com/archive.travis-ci.org

amount of information we can extract from a build log varies per
build technology used. Moreover, some build tools give users the
option to modify their console output, albeit rarely used in practice.

Example 1: Standard output from MAVEN regarding tests
1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 T E S T S
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 Running n l . t u d e l f t . watchdog . C l i e n t V e r s i o n C h e c k e r T e s t
5 T e s t s run : 1 , F a i l u r e s : 0 , E r r o r s : 0 , Sk ipped : 0 , Time

e l a p s e d : 0 . 0 4 s e c
6

7 R e s u l t s :
8

9 T e s t s run : 1 , F a i l u r e s : 0 , E r r o r s : 0 , Sk ipped : 0
10

11 [ INFO ] A l l t e s t s p a s s e d !

Example 1 shows an excerpt of one test execution from the TE-
STROOTS/WATCHDOG project. In the output, we can see the ex-
ecuted test classes (line 4), and how many tests passed, failed, er-
rored and were skipped. We also get the test execution time (line
5). Moreover, MAVEN prints an overall result summary (line 9) that
the BUILDLOG ANALYZER uses to triage its prior findings. Line
11 shows the overall test execution result. Our BUILDLOG AN-
ALYZER gathers all this information and creates, for each invoked
project, a CSV table with all build and test results for each job built.
We then aggregate this information with information from the build
status analyzer step by joining their output. TRAVISTORRENT pro-
vides easy access to this data.

Example 2 shows the equivalent GRADLE output. The silent
GRADLE becomes more verbose when a test fails, providing us
with similar information to Example 1.

Example 2: Standard output from GRADLE regarding tests
1 : t e s t

By contrast, in Ruby, the test framework is responsible for the
console output: it is no different to invoke RSPEC through RAKE
than through BUNDLER, the two predominant Ruby build tools [29].
For Ruby, we support the prevalent TEST::UNIT and all its off
springs, like MINITEST. Moreover, we capture behavior driven
tests via RSPEC and CUCUMBER support [30].

3.3 Build Linearization and Mapping to Git
If we want to answer questions such as “how much latency does

CI introduce,” we need to make a connection between the builds
performed on TRAVIS CI and the repository which contains the
commits that triggered the build. We call this build linearization
and commit mapping, as we need to interpret the builds on TRAVIS
CI as a directed graph and establish a child-parent relationship
based on the GIT commits that triggered their execution.

Section 3.3 exemplifies a typical GITHUB project that uses TRAVIS
CI for its CI. In the upper part 1©, we see the TRAVIS CI builds (§1-
§9), which are either passed (§1-§6, §9), canceled (§7), or broken
(§8), see Section 2.2. In the lower part 2©, we see the correspond-
ing GIT repository hosted on GITHUB with its individual commits
(#A-#H). Commits #D1-#D3 live in a pull request, and not on the
master branch, traditionally the main development line in GIT.

a) Build §1 showcases a standard situation, in which the build
passed and the commit id stored with the build leads to the correct
commit #A that triggered build §1. However, there are a number of
more complex situations.

b) If multiple commits are transferred in one git push 3©,
only the latest of those commits is built (§2). In order to get a
precise representation of the changes that lead to this build result,
we have to aggregate commits #B and #C.
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Figure 4: Exemplary scenario of how to match commits from a GITHUB repository to their corresponding TRAVIS CI builds.

c) It is a central function of TRAVIS CI to support branches or
pull requests 4©, such as commit #D1. When resolving builds to
commits, we know from the API that §3 is a pull request build (see
Section 2.2). Its associated commit points us to a virtual integration
commit #V1 that is not part of the normal repository, but automati-
cally created as a remote on GITHUB 5©. This commit #V1 has two
parents: 1) the latest commit in the pull request (#D1), and 2) the
current head of the branch the pull request is filed against, the lat-
est commit on the master branch, #C. Similarly, when resolving the
parent of §4, we encounter a #V2, resolve it to #D2 and the already
known #C. We also know that its direct parent, #D1, is branched-
off from #C. Hence, we know that any changes from build result §4
to §3 were induced by commit #D2.

d) In the case of build §6 on the same pull request 6©, its direct
predecessor is unclear: we traverse from #V3 to both 1) commit
#D2 in the pull request, which is known, and to 2) #E on the master
branch, which is unknown and cannot be reached from any of our
previous commits #D2, #D1, or #C. This is because there was an
intermediate commit #E on the master branch in-between, and pull
requests are always to be integrated onto the head commit of the
branch they are filed against. In such a case, one build can have
multiple parents, and it is undecidable whether the changes in #D3,
#E or a combination of both lead to the build result §6.

e) Build §5 shows why a simple linearization of the build graph
by its build number would fail: It would return §4 as its prede-
cessor, when in reality, it is §2 7©. However, even on a single
branch, there are limits to how far GIT’S complex commit relation-
ship graph can be linearized and mapped to TRAVIS CI builds. For
example, if a build is canceled (§7), we do not know about its real
build status – it might have passed or broken. As such, for build
§8, we cannot say whether the build failure resulted from changes
in commit #F or #G.

f) Finally, when merging branches or pull requests 8©, a similar
situation as in c) occurs, in which one merge commit #H naturally
has two predecessors.

3.4 Statistical Evaluation
When applying statistical tests in the remainder of this paper, we

follow the same principles established in our previous work [16]:
we regard results as significant at a 95% confidence interval (α =
0.05), i.e. if p 6 α . All results of tests ti in the remainder of this
paper are statistically significant at this level, i.e. ∀i : p(ti)6 α .

For each test ti, we first perform a Shapiro-Wilk Normality test
si [31]. Since all our distributions significantly deviate from a nor-
mal distribution according to Shapiro-Wilk (∀i : p(si)< 0.01 6 α),
we use non-parametric tests: for testing whether there is a signif-
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Figure 5: TRAVIS CI adoption per language.

icant statistical difference between two distributions, we use the
non-parametric Wilcoxon Rank Sum test.

Regarding effect sizes e, we report the traditional Cliff’s Delta,
a non-parametric effect size for ordinal values [32], and the newer
Vargha-Delaney (Â12) effect size [33]. The Â12(A,B) measure has
an intuitive interpretation: its ratio denotes how likely distribution
A outperforms B. We interpret effect sizes e as e < 0.1 very small,
0.1 6 e < 0.3 small, 0.3 6 e < 0.5 medium, 0.5 6 e < 0.7 large,
0.7 6 e < 0.9 very large, and 0.9 6 e < 1 nearly perfect [34].

4. RESULTS
In this section we report the results to our research questions.

4.1 RQ1: How common is the use of Travis CI
on GitHub?

Before investigating the testing patterns on TRAVIS CI, we must
first know 1) how many projects on GITHUB use TRAVIS CI, and
2) what characterizes them and their use of TRAVIS CI. In 2016,
we are in a good position to measure the TRAVIS CI adoption rate
on a broad scale, as projects interested in using free CI now had two
years of adoption time to start to use TRAVIS CI (see Section 2.2).
We conjecture that, if projects have a primary interest in using CI,
this is enough time to hear about and set up TRAVIS CI.

According to GHTORRENT, GITHUB hosted 17,313,330 active
OSS repositories (including forks) in August, 2015. However, many
of these 17 million projects are toy projects or duplicated (forks
with no or tiny modifications). In our analysis, we are interested in
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Figure 6: Box plot of the #builds per project and language.

state-of-the-art software systems that have a larger real-world user
base. To retrieve a meaningful sample of projects from GITHUB,
we follow established project selection instructions [35]: we se-
lected all projects that have forks, received at least one commit in
a period of 6 months prior to our study, received at least one pull
request and have more than 50 stars.

This filtering resulted in 58,032 projects. For each project, we
extracted five GITHUB features from GHTORRENT: main proj-
ect language ∈ {C, C++, Java, Ruby, ...}, number of watchers ∈
[51;41,663], number of external contributors ∈ [0;2,986], number
of pull requests ∈ [0;27,750], number of issues ∈ [0;127,930] and
active years of the project ∈ [0;45]); using TRAVIS POKER we col-
lected how many TRAVIS CI builds were executed. In total, we
found that our 58,032 projects were written in 123 unique main
repository languages. 16,159 projects used TRAVIS CI for at least
one build, resulting in an overall TRAVIS CI usage rate of 27.8%.
The majority of the 123 primary languages of our projects are not
supported by TRAVIS CI (see Section 2.2). When reducing our
main project language to the 26 languages supported by TRAVIS
CI, we are left with 43,695 projects (75.3% of all projects). Out
of these, 13,590 (31.1%) actually used TRAVIS CI for at least one
build.

Figure 5 details these findings further, showing the number of
projects using TRAVIS CI aggregated per programming language.
Inspired by Vasilescu et al., who found that many projects were
configured for TRAVIS CI but did not really use it, we group proj-
ects into categories with 1) no, 2) a shorter (6 50 builds), and 3) a
longer (> 50) TRAVIS CI history. If there is a smaller number of
TRAVIS CI builds, this means that the project either recently started
using TRAVIS CI, or that TRAVIS CI was quickly abandoned, or
that the project was not active since introducing TRAVIS CI. Due
to their short build history, we have to exclude such projects from
our onward analyses: it is questionable whether these projects ever
managed to get CI to work properly, and if so, there is no observ-
able history of the projects using CI. We, however, are interested in
how projects work and evolve with an active use of CI.

While 31.1% is a closer approximation of the real TRAVIS CI
usage rate, Figure 5 hints at the fact that also projects whose main
language is not supported, use TRAVIS CI, expressed in the “Other”
column.

In total, TRAVIS CI executed 5,996,820 builds on all 58,032
sampled projects. Figure 6 gives a per-language overview of the
number of builds executed per each project, based on all 16,159
projects that had at least one build. Next to the standard box plot

10

1,000

100,000

0 10,000 20,000 30,000 40,000
Tests run

N
um

be
r o

f b
ui

ld
s

���������������������������
���

�

��

��

��

��������

�

��

�

��������������

�

�

����

�����

��������������

��

�������������

����

������������������

�

��

��

������

���������

��������������������������

��

�������������������������������

��

�����

�

�

��

�

�

�

�

�

���������

�

�

���������������

�����

�

����������

���������������

����

����

�

�����������������������������������������

�

��

����

������

�����

������

���

����������

�

��

����

�����

��������

��������������������������������������

��

�������

�

���������������������������

��

�

���

��

��

��

��

�

��

�

��

�����

�

�������������������

�

�

�

�

����

�

�

�

����

������

�

�������

���

��

����

��

�

���

�

�������

�

�

�

������

��

���

�

�

����

���

���

��

�

�

����

�

���������

�

�����������������������������

�

����������������

����

�

��

�

���

�

��

��

����

������

�

�

��

��

��

��������

���

�

�

��

�

�

�

��

��

��

��

�

��

�

�

��

�����

�

��������

���

����

��

��

�

�������

�

��

�

����������������

�

�

��

��������������������������������������������������������������������������������������������������������

�

�

�

�������

�

�����������������������������������������������������������

��

�������

���

�����������������

�

����������������

��

������������������������

���

����

�

�����������������

��

�����������������������������������

��

��

�������

�

�

�

���

���

�

�

�

�

�

���

�

�����

�

�

�����

�������

�

���������

�

��������

��������

��

�

�

�

���

��

�����

������������

���

�

�

����

�����

�������

��

��

�

�

�

�

��

����

�
��

�

��

�

����

�������������

�

���

������������

���

���

������

��

����

�

����

��

���������

�

��������������

�

�

����������

�

����

�����

��

�

����

�

�

�

��

�

�

�

�

��

��������

����

�

��

����������������

��

���

��

���

����

�

��������

���

�����������

�

����

��

�

��

�����

�

�����

�

�

�

�

����

�����

�����

�

��

��

������������������������������������������������������������

�

�����

�

�

�

�������

�

��

����

��

�

�������

�

��

��

����

������

�

�

�

��

���������������

����������

�

���

�

���

�

��������

�

�

�

�

�

�

�

�

�

��

�

�

�

���

�

�

�

�

�

����������

���

�

�

�

�

��

�

���

�

��

�

�����

��

��

�

��

��

��

��

��

�

���

�������

����

�

��

�

���

��

������

�

��������

�

���

�

�

�

������

��

�

�

�

�

�

�

�

�

��

�

�

���

�

�

�

�

���

�

�

�

�

�

�

��

�

�

��

��

�

�

����

����

�

����

�

�

�

�

��

��

�

�

�

�

������

��

��

�

�

�

����

�

�

�

�

��

�

�

��

�

��

�����

�

���

���

��

�

�

�

���

���

��

�
�

��

��

�

���

�����������

�

�

��

�

�

�

�

�

�

�

�

��

�

�

���

�

���

�

�

�

���

�

�

�

�

�

��

�

�

�

���

�

�

�

��

�

����

�

�

�

�

�

��

��

�

�

�

����

�

�

���������

��

�

�

�

�

�

���

�

�

���

�

�

�����

�

�

�

�

�

�

����

�

�

�

�

�

��

�

��

���

�

�

�

�

�

��

�

�

�

�

���

��

�

��

�

�

�

�

�

�

���

��

��

�

��

�

��

��

����

������

�

�

����

�

�

��

�

�

��

�

��

�������

�

���

��

�

�

��

�

�

�

�

�

����

�

�

���

�

�

�

�

���

�

��������

�

����

�

�����

�

�������

��

�

��

�����������

��

����������������������������

�

����������������

���

���������

�

�

�

��

���

����

������������

����

��

��

����������������������������������������������

��

�

�

���

�

������

��

��

�

��������������

�

�����������������������

�

���������������������������������������������������������������������������������������������������������������������������������

�������

������

�

�������������������

�

�����

���

�

����

����

�

�������������

����

��

����������

�

���������������������������������

��

������

��

����

�

�����

�

������

�

�����������������������

�

�������������

��

��

�

����������������������������

�

���������������

�

�

�

������������������

�

��

�����

�

������������������

�

���������

�

�

�

�

�

����������

���

����

�

�

��

�

�

���

�

��

�

����

�

���

�

�������

�

��������

�

��

�

������������������������������������������

��

������

�

�

�

�������

�

��

������

���

���������������

�

����������

�

����������������������������������������������

�

������

�

�������

�����

�

�

�

��

�

��

�

����

�

����

�

���������������������������

��

�

�

������������

�

�����

�

�

�

�������

�

���

�

�

�

��

��

�

�

�������

�

��

�

�

�

�����

��

��

�

�

�

�

�

�

��

�

�

�

�

��

�

��

�

�

�

�

�

�

���

�

�

���

��

�

�

��

�

�

�

�

�

��

�

�

�

�

�

�

�

��

����

��

����

�

�

�

�

�

�

�

�

�

�

�

��

���

�

�

�����

������

�

�

�

�

�

����

�

�

�

�

��

�

�

�����

��

�

�

�

�

�

�

�

�

�

���

�

�

�

��

�

����

�

�

�

�

�

�

��

��

��

�

�

�

�

�

���

���

��

�

�

�

�

�

���

�

�

�

��

�

�

�

�

�

�

����

�

�

�

�

��

�

�

�

���

�

�

�

��

��

�

�

����

�

��

�

��

�

�

�

�

�

�

��

��

���

��

�

�

���

�

�

���

�

���

�

�

�

�

��

��

�

��

�

�����

�

���

�

�

��

�

�

���

�

�

���

�

�������

��

�

�

�

�

�

�

��

�

������

�

��

�

�

�

����

�

�

�

��

�

����

�

��

�

��

�

�

�

�

��

�

�

�

�����

�

�

�

�

�

��

�

��

�

�

���

�

�

�����

���

�

��

�

���

�������

�

�

�

�

�

�

�

�

�

�������

�

���������

��

�

�

�

�����

���

�

�

���

�

�

�

�

����

�

�����

�

������

�

�����

�

������������

�

��

�

�

�

��

�

�

�

�

��

�

�

�

�

�

�

�

�

�

��

�

����

�����

�

���

��

�

�

�

������

�

�

�

�

�

��

�

�

�

��

�

���

�

�

����

�

���

�

�

�

��

�

�

�

�

��

�

�

��

�

�

��

�

��

�

�

�

�

�

���

��

��

�

���

�

�

�

�

�

���

�

����

���

��

��

�

�

�

��

��

��

�

�

�

�

��

�

��

�

���

�

��

���

��

�

�

�

�

�

�

�

�

���

���

���

�

�

�

�

���

��

�

�

��

��

�

��

��

�

�

�

�

�

�

���

�������

�

�

�

���

�

�

����

�

���

�

�

��

�

�

�

�

�����

�

�

�

���

��

�

��

��

�

���

�

�

��

���

�

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

�

�

�

��

��

�

�

��

��

�

�

��

��

���

�

�

�

���

�

�

�

��

�

�

�

�

�

�

�

��

�

�

�

��

�

��

�

�

�

��

�

�

�

�

�

��

�

����

�

�

�

�

��

��

�

�

��

�

���������

��

�

���

���

�

���

�

�

�

����

���

�

������

����

�

������

�

�

������

����������

�

���

�

�

�

�

����

�

�

����

��

�������������

�

���

�����

�

�

�

�

�

��

�

�

�

��

���

�

�������

10

1,000

100,000

Java Ruby
Language

Te
st

s 
ru

n 
(lo

g 
sc

al
e)

Figure 7: Number of tests run per build (left, log-scale) and
number of tests per build per language (right, log-scale).

features, the ⊕-sign marks the mean number of builds.
From our 13,590 projects in a TRAVIS CI-supported main lan-

guage, we selected the ones which were best fit for an analysis
of their testing patterns. We therefore ranked the languages ac-
cording to their adoption of TRAVIS CI as depicted in Figure 5.
We also requested that they be popular, modern languages [36],
have a strong testing background, one language be dynamically and
the other statically typed, and the number of available projects be
similar. Furthermore, there should be a fairly standard process for
building and testing, widely followed within the community. This
is crucial, as we must support all variants and possible log output
of such frameworks. Moreover, it would be desirable if both lan-
guages show a similar build frequency in Figure 6. The first two
languages that fulfilled these criteria were Ruby and Java. From
these two languages, we sampled the 1,359 projects (Ruby: 936,
Java: 423) that showed considerable TRAVIS CI use (> 50 builds
in Figure 5).

All further analyses are based on an in-depth investigation of
1,359 Java and Ruby projects, for which we downloaded and
analyzed 2,640,825 build logs from TRAVIS CI (1.5 TB).

4.2 RQ2: How central is testing to CI?
The purpose of CI is usually twofold: first, to ensure that the

project build process can construct a final product out of the proj-
ect’s constituents and second, to execute the project’s automated
tests. The testing phase is not a mandatory step: in our data set,
31% of Java projects and 12.5% of the Ruby projects do not fea-
ture test runs. Overall, 81% of the projects we examined feature
test runs as part of their CI process. On a per build level, 96% of
the builds in our sample feature at least one test execution.
RQ2.1 How many tests are executed per build? Figure 7 presents
a histogram of the number of tests run per build on the left-hand
side, and an analysis of the tests run per language on its right hand
side in the box plot.

As expected, the histogram follows a near-power law distribution
often observed in empirical studies [16]: most projects execute a
smaller amount of tests, while a few run a lot of tests (mean: 1,433;
median: 248; 95%: 6,779). A particular outlier in our data set
was a project that consistently executed more that 700,000 tests per
build. Upon manual inspection of the project (GOOGLE/GUAVA),
we found that it automatically generates test cases at test runtime.

The right hand side of Figure 7 shows the distribution of test runs
across the two programming languages in our sample; on average,
Ruby builds run significantly more tests (median: 440) than Java
builds (median: 15), revealed by a pairwise Wilcoxon test with a
large (Cliff’s delta d = 0.63) to very large (Â12 = 0.82) effect size.
RQ2.2: How long does it take to execute tests on the CI? Fig-
ure 8 depicts a log-scale box plot of the test duration, split by lan-
guage. We observe that the median test duration is relatively short,
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Figure 8: Box plots of test duration (left) and percentage of test
failures broken down per project and language (right).

Table 1: Descriptive statistics for CI latencies (minutes)
Latency type 5% median mean 80% 95%

Commit push latency 0.1 0.4 182 17.1 1,201
Job scheduling latency 0.3 1.2 33.9 8.7 85.9
Build environment setup latency 0 0 3.1 0.05 0.35
Build execution latency 0.8 8.3 19.64 30.2 77

at ∼1 minute for Java and 10 seconds for Ruby projects. Despite
the significant differences in the test duration, both languages fea-
ture a similar set of large outliers, reaching maximum test execution
times of over 30 minutes.
RQ2.3: How much latency does CI introduce in test feedback?
CI introduces a level of indirection between developers and the
feedback that they receive developer testing. In the TRAVIS CI
and GITHUB setting, latency can be broken down into: the time
1) between locally committing and pushing to GITHUB (commit-
push latency), 2) to schedule a build after a push (job scheduling
latency), 3) to provision the infrastructure (build environment setup
latency), and 4) to execute the build (build execution latency). To
calculate latencies, we exploit the fact that TRAVIS CI builds are
always triggered by GITHUB push events. The process to connect
builds to commits is as follows:

1) We identify all commits that were built on TRAVIS CI and
map commits and builds to each other (Section 3.3).

2) For each commit, we search for the GITHUB push event that
transferred it. As multiple push events might exist that con-
tain a specific commit (e.g. a push to a repository that is
cherry-picked by a fork and pushed to a different branch),
we always select the earliest.

3) We list all commits in the push event and select the first one
as our reference. We chose to keep the information about the
first commit (and not e.g. the commit actually built) as this
allows us to calculate the total latency induced by the devel-
oper (not pushing a commit creates latency to the potential
feedback received by the CI) and compare it to the latency
introduced by the CI.

Table 1 presents an overview of the latencies involved in receiv-
ing feedback from testing on the CI environment. The results reveal
two interesting findings: firstly, developers tend to push their com-
mits to the central repository shortly after they record them locally;
secondly, the total time the code remains within the TRAVIS CI
environment dominates the latency time.

Developers typically push their commits quickly after their cre-
ation to the remote repository. The commit push latency distri-
bution is very skewed; 80% of the commits only stay on the de-
veloper’s local repositories for less than 17 minutes, and 50% are
pushed even within one minute. The distribution skewness is a re-
sult of using distributed version control; developers have the option
to commit without internet access or to delay showing their changes
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Figure 9: Distribution of build status per language.

until perfected. Our data shows that this only happens in few cases.
On TRAVIS CI, a build is scheduled immediately (average la-

tency is less than a second) after commits are pushed to a reposi-
tory. The time between scheduling and actual build execution de-
pends upon resource availability for free OSS projects. The added
latency is about one minute in the median case, but can reach up to
nine minutes for the 80% case. While this latency is significant, it
represents the price to pay for the free service offered by TRAVIS
CI; builds on commercial versions are scheduled immediately.

Moreover, before executing each build, TRAVIS CI needs to pro-
vision a virtual machine or Docker container with the required pro-
gramming language and runtime combination. This operation is
usually fast: on average, across all builds, it takes 3.1 seconds (me-
dian: 0; 80%: 3; 90%: 22). However, as build job execution is
mostly serial on TRAVIS CI, the time cost to be paid is linear in
the number of executed jobs or build environments. As the average
project in our data set spawns 5 jobs (median: 3; 80%: 7; 90%:
10), running the build in multiple environments induces an average
time overhead of 25 seconds just for provisioning operations on the
CI server.

The build process itself adds another 8.5 minutes of median la-
tency to the test run. As there is a strictly enforced 50 minute cap
on the length of build jobs, 80% of the builds last 30 minutes or
less.

To sum up the findings, the use of CI adds a median of 10 min-
utes to the time required to get feedback from testing, while the
80% case is significantly worse. The build time, which is entirely
in each project’s domain, dominates the feedback latency.

4.3 RQ3: What causes builds to break?
With this research question, we aim to unveil how often tests fail

when executed on the CI server, how often they break the build,
whether they are a decisive part of CI, and if multiple build envi-
ronments are useful in terms of causing different test results.
RQ3.1: How often do tests fail? In RQ3.1, we are interested in
how often tests fail, when they are executed as part of the script
phase of a TRAVIS CI build.

For all 1,108 projects with test executions, Figure 8 shows a box
plot of the ratio of builds with at least one failed test, broken down
per language. With a median of 2.9% for Java (mean: 10.3%) and a
median of 12.7% (mean: 19.8%) for Ruby, the ratio of test failures
among all builds is significantly higher in Ruby than in Java proj-
ects, confirmed by a Wilcoxon rank sum test with a medium to large
effect size (Cliff’s delta d = 0.40, Vargha-Delaney Â12 = 0.70).
RQ3.2: How often do tests break the build? Beyond merely
knowing how often tests fail, we want to research which impact
this has in the bigger picture of the CI process.
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Table 2: How often are tests a decisive part of CI?

Builds Projects
Java Ruby Java Ruby

Tests failed
Status passed

16,919 (35.2%) 16 (1.7%)
1,146 (13.6%) 15,773 (39.8%) 4 (2.0%) 12 (1.6%)

Tests failed,
Status failed

31,138 (64.8%) 924 (98.3%)
7,286 (86.4%) 23,852 (60.2%) 197 (98.0%) 727 (98.4%)

Σ
48,057 940

8,432 39,625 201 739

Table 3: Integration results in different environments.

Test Status Builds Projects
Java Ruby Java Ruby

Different 27,704 (11.4%) 680 (60.9%)
1,725 (2.3%) 25,979 (15.6%) 101 (34.0%) 579 (70.7%)

Identical 215,499 (88.6%) 436 (39.1%)
74,666 (97.7%) 140,833 (84.4%) 196 (66.0%) 240 (29.3%)

Σ
243,203 1,116

76,391 166,812 297 819

Figure 9 shows an aggregated-per-project break-down of the build
outcomes of all 1,108 projects which executed tests, separated by
Java and Ruby. Next to each stacked bar, we report its partici-
pation in the overall build result. The graphs of Java and Ruby
are largely comparable, with a similar build result distribution, and
small differences within the groups. In total, cancels are very rare
and infrastructural problems cause builds to break in around 5%
of cases. Failures during the build process are responsible for most
broken builds, and they are more frequent in Ruby (21.3 percentage
points) than Java (14.4 % p.). In both cases, the single largest build-
breaking phase is testing, with failed tests responsible for 59.0% of
broken builds in Java and 52.3% in Ruby projects.
RQ3.3: Are tests a decisive part of CI? Table 2 shows the num-
ber of builds with test failures, which have an overall failed result,
and aggregates this on a per-project level. For this aggregation, a
project has to consistently ignore the result of the test execution for
all its history. This means that if the tests failed, this never lead
to a failing build. The table shows that, in general, the test execu-
tion result is decisive for the overall build result, at a per-project
aggregated level of 98.3%.

Consistently ignoring the test execution result is very rare (1.7%).
However, it is quite common that the failed test execution result of
individual builds has no influence on the whole result (35.2%). Ig-
noring such individual test failures in a build is much more common
for Ruby (39.8%) than for Java builds (13.6%).
RQ3.4: Does integration in different environments lead to dif-
ferent test results? Each build comprises n > 1 job(s), which per-
form the same build steps in altered environments on the same GIT
checkout (see Section 2.2). However, integration in different en-
vironments is also expensive, as the required build computation
time becomes n× the individual build time. One might argue that
it therefore only makes sense to do continuous integration in sev-
eral environments when their execution leads to different results,
capturing errors that would not have been caught with one single
environment. In RQ3, we set out to answer this question.

Table 3 gives on overview of how many times the execution of
tests in different environments leads to a different build outcome.
We observe that in total, 11.4% of builds have a different integra-
tion result, meaning that there were at least two jobs in which the
test execution resulted in a different status. This effect is much
more pronounced for Ruby (15.6%) than for Java (2.3%) systems.
In total, over 60% of projects have at least one build in which there

was a different test execution result among jobs.

5. DISCUSSION
In this section, we first discuss our propositions by combining

the results of RQs 1-3 and then show how we mitigated possible
threats to their validity. We also point out promising future research
topics.

5.1 Results
Before we started this study, we had one data point that indi-

cated TRAVIS CI use might be as high as 90% [10]. By contrast,
regarding P1, we found in RQ1 that around a third of all investi-
gated projects used TRAVIS CI in 2015. While this is significantly
lower, it still shows a relatively widespread adoption. We attribute
this to the facts that TRAVIS CI provides easy-to-use default build
configurations for a wide array of languages and that it is gratis.

Around 30% of GITHUB OSS projects that could potentially
use TRAVIS CI for free, also make active use of it (P1).

Compared to about 60% of state-of-the-art GITHUB projects us-
ing ASATs [7] and some 50% of projects in general doing test-
ing [16], a number of reasons might hinder an even more-widespread
use of TRAVIS CI: Famous GITHUB projects such as SCALA/S-
CALA9 often run their own CI server (see Section 2.1).10 This
exemplifies that from the 30% adoption rate, it does not follow
that 70% of projects do not use CI. For high-profile projects with
a complex CI process, the migration to TRAVIS CI would involve
high initial risks and costs. One interesting line of future research
therefore is to find out the overall CI adoption among top-GITHUB
projects. It might be that word about the benefits of CI, or TRAVIS
CI itself has not spread to every project maintainer yet.

A paradoxical finding was that a few projects written in lan-
guages that are not supported by TRAVIS CI, still used it (Figure 5
“Other”). A manual investigation into a sample of such projects
revealed that they also contained a smaller portion of code written
in a language supported by TRAVIS CI, for which they did enable
CI. TRAVIS CI has traditionally had deep roots in the Ruby com-
munity [37]. We found that this bias towards the Ruby community
has largely vanished nowadays.

CI adoption is uniform among most languages TRAVIS CI
supports (P1).

In RQ1, we also found that the number of builds for projects
varies per language, but this variation is contained. Figure 6 is a
measure of how active projects in specific languages are and how
frequently they push, thereby triggering an automated CI build and
thus leveraging the full potential of CI: for each push with new
commits on one branch, a new TRAVIS CI build is triggered on the
head of the branch (see Section 2.2). This stresses the fact that CI is
a software engineering concept orthogonal to the chosen program-
ming language used, as it applies to many languages in a similar
way. Thanks to homogeneous CI use and adoption of TRAVIS CI,
researchers find a large corpus of comparable projects with similar
CI patterns. This eases the interpretation of research results and de-
creases the need for an extensive control of external variables that
would be necessary if the projects came from heterogeneous build
9https://github.com/scala/scala

10https://scala-ci.typesafe.com/
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systems. Specifically, factors such as build duration and setup pro-
cess are more reliable in the homogeneous TRAVIS CI case.

With P2, we were interested in the importance of testing in the
CI process. Overall, we found that testing stands central in CI.

Testing happens in the majority of builds. Only∼20% of stud-
ied projects never included a testing phase in their CI (P2).

Failed tests have a higher impact, both relative and absolute and
irrespective of the programming language, than compile errors, de-
pendency resolution problems and other static checks combined.
This puts the finding by Seo et al. [9] that most build errors stem
from missing dependencies in perspective. Our investigation shows
that issues in the compilation phase represent only a minority of the
causes for broken builds (3.9% in Java, 7% in Ruby) in the bigger
picture of a CI environment.

Failing tests are the single dominant reason for unsuccessful
builds. (P2)

Having established that the median number of builds in which
tests fail is modest (RQ3.1), but that test failures are responsible
for over half of all broken builds (RQ3.2), the question stands in
how many instances tests fail, but the developers configured their
CI in such a way that the negative test execution result does not
influence the overall build status. In such cases, the test execution
would not be a crucial factor to the build success. As described
in Section 2.2, TRAVIS CI runs tests per default and it would be a
deliberate choice by developers to ignore the test result.

Projects which consistently ignore the test result are very rare.
However, ignoring individual builds is quite common (P2).

One possible reason for the difference between projects in Java
and Ruby might stem from the fact that projects which do not run
tests on the CI only make use of a sub-set of CI features, and there-
fore also have fewer builds. It might make more sense to just com-
pile Java applications than have a CI setup for a Ruby application
(that does not need to be compiled) without tests.

The typical Ruby project has an ten times more tests than the
typical Java project (P2, P3).

Given the size of our samples (423 Java and 936 Ruby projects),
we believe that this difference might be attributable to the funda-
mental differences in the Java and Ruby programming languages.
Specifically, the lack of a type system in Ruby might force devel-
opers to write more tests for what the compiler can check automati-
cally in the case of Java [38]. We need a broader study with a larger
sample of dynamic and static languages to verify whether this holds
generally. With more tests, we naturally expect more test failures
as a result.

Ruby projects have a four-times higher likelihood for their
tests to fail in the CI environment than Java projects (P3).

While CI testing also happens in Java, these findings raise the
question whether Java in general and JUNIT test cases in particular
are the best possible study objects when researching testing.

Having established that the large majority of projects execute
tests as part of their CI, it remains to find out which indirection in
the feedback cycle their execution causes (P4) and compare it to
local test executions in the IDE (P5).

Multiple test environments are only useful when they also lead to
different tests results in practice (P4). Otherwise, they just consume
unnecessary resources and time. Our analysis in RQ3.4 showed
that test execution results vary per environment for ∼10% of test
executions. Some differing test results of these 10%, stem from a
sheer re-execution of tests, uncovering flickering tests. One way to
uncover these would be to re-execute failed builds on TRAVIS CI
and observe execution result changes. We refrained from doing so,
as it would involve large costs on TRAVIS CI.

The average project on TRAVIS CI is tested in five integration
environments (P4).

Our results suggest that integration in multiple environments 1)
is helpful in uncovering a substantial part of bugs that would other-
wise be missed and 2) does lead to uncovering bugs that would not
be captured by running the tests locally, at the cost of an increased
feedback latency. It might be more helpful for languages like Ruby
than Java.

Having established that CI adoption is relatively widespread (P1),
that testing is integral to CI (P2), that it depends very much on the
project language (P3), and that multiple integration environments
are helpful in practice, it remains to discuss whether testing on the
CI could replace local testing in the IDE in terms of providing quick
feedback(P5). For this, we consider the latency induced by CI.

In RQ2.3, we observed that commits only live shortly (typically,
less than 20 minutes) in the developer’s private repositories before
developers push them upstream to the remote mainline. Popular
belief about distributed version control indicates that developers
should perfect their changes locally before sharing them publicly,
which one would normally assume to take longer than 20 minutes.
Why do developers apparently go against this norm? Previous work
on developer usage of pull requests [25, 39] might provide an indi-
cation about potential reasons. In a “fail early, fail often” approach,
integrators and contributors overwhelmingly rely on their tests to
assess the quality of contributed code. Instead of perfecting code
in a dark corner, this has the advantage of building global aware-
ness through communication in the pull request discussion. While
collaborating developers crave for fast feedback, with 8.3 minutes
build time in the median, the CI introduces measurable delays into
this feedback process.

The main factor for delayed feedback from test runs is the time
required to execute the build. (P5)

By contrast, in an empirical investigation of the testing habits of
416 developers, we found that the median test duration (“latency”)
in the IDE is 0.54 seconds [16]. This is three orders of magnitude
faster than running tests on the CI: testing in the IDE is fast-paced,
most test executions fail (65% in comparison to 15% on the CI)
and developers usually only execute one test (in contrast to all tests
on the CI). Hence, the aim, the length of the feedback cycle and
their observed different use in practice, suggest that testing on the
CI may not be a suitable surrogate for local testing, if fast feed-
back is required. These findings contradict empirical evidence of
projects like the “Eclipse Platform UI,” which reported to increas-
ingly offload their test executions to the CI [16]. This calls for
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future research: developers spend a quarter of their time working
on tests [16], yet rarely execute them in the IDE. If they do, testing
in the IDE is immediate and most tests fail. On the CI, most test
executions pass and there is a notable delay between creating code
and receiving feedback (usually, 10 minutes for pushing plus 10
minutes for building). This leaves us with the question where else
developers run their tests. One such place could be building on the
command line.

5.2 Threats to Validity
In this section, we discuss the limitations and threats that affect

the validity of our study, show how we mitigated them and propose
future work that could help alleviate these concerns.

Construct validity concerns errors caused by the way we col-
lect data. For capturing build data, we relied on the custom-created
tools BUILDLOG ANALYZER, TRAVIS POKER and TRAVIS HAR-
VESTER. To gain confidence that these tools provide us with the
correct data and analysis results, we tested them with several ex-
emplary build logs, which we also packaged into their repository
and made them publicly available for replication purposes.

Threats to internal validity are inherent to how we performed
our study. We identify two major technical threats: 1) Through the
use of git push -force, developers can voluntarily rewrite
their repository’s history, leading to a wrong build linearization.
By counting the number of commits that we could not resolve with
the strategies described in Section 3.3, we received an upper bound
for the severity of this threat. Since less than 10% of all commits
are affected, we consider its impact small. 2) Developers can re-
execute builds (marker 6© in Figure 1), for example to re-run a build
that failed due to a TRAVIS CI infrastructural problem. In such
rare cases, TRAVIS CI overrides the previous build result. This
can possibly lead to a large time difference between having pushed
commits to GITHUB and TRAVIS CI starting the build, which is
why we excluded the top 1% quantile of builds. As our study does
not retroactively re-build projects, we are sure to observe the real
build problems developers ran into during their actual work with
them.

Threats to external validity concern the generalizability of our
results. While we examined 58,032 projects for answering RQ1
and 1,359 projects for RQs 2-3, all projects stem from a single CI
environment, namely TRAVIS CI. We explicitly opted for TRAVIS
CI because it is frequently used along by projects hosted on GITHUB,
which in turn allowed us to combine two data sources and triage
data such as time stamps. Nevertheless, we do not know how
strongly the idiosyncrasies of both services affect the generaliz-
ability of our results on the CI-based software development model.
For example, the build duration and latency measurements in RQ2
depend strongly on the load and resources provided by TRAVIS CI.
When compared to other build servers, they might only be propor-
tionally correct.

Due to the fact that we could only study the publicly visible part
of TRAVIS CI and GITHUB, our study gives no indications of the
practices in private projects, which might deviate significantly.

Similarly, for RQ2 and RQ3 we only considered Java and Ruby
projects to reduce the variety of build technologies and test runners.
We only compared Ruby as one instance of a dynamically-typed
language to Java as one instance of a statically-typed language.
Some of the differences we found between them might be more at-
tributable to the specific differences between Ruby and Java, rather
than the general nature of their type system. As programming lan-
guage communities have different testing cultures, an important
avenue of future work is to increase the number of programming
languages that are part of this investigation.

6. CONCLUSION & FUTURE WORK
In conclusion, we found that a third of popular GITHUB proj-

ects make use of TRAVIS CI, and their adoption is mostly uniform
(P1). This surprising finding contrasts prior research that found
a far higher adoption rate of 70%. Our investigation shows that
testing is an established and integral part in CI in OSS. It is the
single most important reason for integration to break, more preva-
lent than compile errors, missing dependencies, build cancellations
and provisioning problems together (P2). Testing is configured as
a crucial factor to the success of the build, but exceptions are made
on an individual level. We found that testing on the CI is highly
dependent on the language, and that a dynamically typed language
like Ruby has up to ten times more tests and leads to a higher build
breakage rate due to tests than a statically typed language like Java
(P3). CI introduces a feature that local test execution cannot pro-
vide: integration in multiple environments. This is commonly used
on TRAVIS CI, and tests show different behavior when executed in
multiple environments in about 10% of builds (P4), showcasing the
value of multiple integration environments. Contrary to prior anec-
dotal evidence, testing on the CI does not seem a good replacement
for local test executions and also does not appear to be used as such
in practice (P5): with a latency of more than 20 minutes between
writing code and receiving test feedback, the way developers use
CI induces a latency that stands in contrast to the fast-paced nature
of testing in the IDE and the idea that developer tests should pro-
vide quick feedback. Moreover, the low test failure rates on the CI
hint at the fact that developers send their contribution pre-tested to
the CI.

Apart from research on our five propositions P1-5, this paper
makes the following key contributions:

1) A precise nomenclature of CI build phases and status.
2) A novel method of analyzing build logs to learn about past

test executions in the context of CI.
3) A comparative study of CI testing patterns between a large

corpus of projects written in a statically and a dynamically
typed language.

4) The implementation and introduction of TRAVISTORRENT,
an OSS open-access database for analyzed TRAVIS CI build
logs combined with GITHUB data from GHTORRENT.

If developers of CI tools such as TRAVIS CI integrate the meth-
ods and tools developed in this paper, they could reduce the time it
takes their users to understand the nature of a CI failure. By directly
indicating the nature of a build breakage to their users, they remove
the need to manually inspect potentially large build logs. When
we approached Mathias Meyer, CEO of Travis, with this possibil-
ity, he answered “that is really awesome [and] sounds extremely
interesting to us.”

Acknowledgments
We thank Travis CI for not throttling their bandwidth, despite our
millions of requests and downloading over 3 TB of data in total. We
also thank Mathias Meyer, CEO of Travis CI, for proofreading the
section on Travis CI, despite having no further involvement in the
creation of this study. We thank Felienne Hermans for her review.

7. REFERENCES
[1] G. Meszaros, xUnit Test Patterns: Refactoring Test Code.

Addison Wesley, 2007.
[2] M. Fowler and M. Foemmel, “Continuous integration,” 2006.

http://www.dccia.ua.es/dccia/inf/asignaturas/

MADS/2013-14/lecturas/10_Fowler_Continuous_

Integration.pdf.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1984v1 | CC-BY 4.0 Open Access | rec: 22 Apr 2016, publ: 22 Apr 2016

http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf


[3] K. Beck, Extreme programming explained: embrace change.
Addison-Wesley Professional, 2000.

[4] M. Brandtner, E. Giger, and H. C. Gall, “Sqa-mashup: A
mashup framework for continuous integration,” Information
& Software Technology, vol. 65, pp. 97–113, 2015.

[5] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and
K. Schneider, “Creating a shared understanding of testing
culture on a social coding site,” in Proceedings of the
International Conference on Software Engineering (ICSE),
pp. 112–121, IEEE, 2013.

[6] C. Sadowski, J. Van Gogh, C. Jaspan, E. Soderberg, and
C. Winter, “Tricorder: Building a program analysis
ecosystem,” in Software Engineering (ICSE), 2015
IEEE/ACM 37th IEEE International Conference on, vol. 1,
pp. 598–608, IEEE, 2015.

[7] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman,
“Analyzing the state of static analysis: A large-scale
evaluation in open source software,” in Proceedings of the
23rd IEEE International Conference on Software Analysis,
Evolution, and Reengineering, pp. xxx–xxx, IEEE, 2016.

[8] J. Rasmusson, “Long build trouble shooting guide,” in
Extreme Programming and Agile Methods - XP/Agile
Universe 2004 (C. Zannier, H. Erdogmus, and L. Lindstrom,
eds.), vol. 3134 of LNCS, pp. 13–21, Springer, 2004.

[9] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and
R. Bowdidge, “Programmers’ build errors: A case study (at
Google),” in Proceedings of the International Conference on
Software Engineering (ICSE), pp. 724–734, ACM, 2014.

[10] B. Vasilescu, S. Van Schuylenburg, J. Wulms, A. Serebrenik,
and M. G. van den Brand, “Continuous integration in a
social-coding world: Empirical evidence from GitHub,” in
Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME), pp. 401–405, IEEE,
2014.

[11] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov,
“Quality and productivity outcomes relating to continuous
integration in GitHub,” in Proceedings of the 10th Joint
Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), pp. 805–816, ACM,
2015.

[12] P. M. Duvall, S. Matyas, and A. Glover, Continuous
integration: improving software quality and reducing risk.
Pearson Education, 2007.

[13] L. Prechelt, “An empirical comparison of seven
programming languages,” Computer, vol. 33, no. 10,
pp. 23–29, 2000.

[14] P. Runeson, “A survey of unit testing practices,” IEEE
Software, vol. 23, no. 4, pp. 22–29, 2006.

[15] D. Janzen and H. Saiedian, “Test-driven development:
Concepts, taxonomy, and future direction,” IEEE Computer,
vol. 38, no. 9, pp. 43–50, 2005.

[16] M. Beller, G. Gousios, A. Panichella, and A. Zaidman,
“When, how, and why developers (do not) test in their IDEs,”
in Proceedings of the 10th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(ESEC/FSE), pp. 179–190, ACM, 2015.

[17] D. Ståhl and J. Bosch, “Modeling continuous integration
practice differences in industry software development,”
Journal of Systems and Software, vol. 87, pp. 48–59, 2014.

[18] R. Ablett, E. Sharlin, F. Maurer, J. Denzinger, and

C. Schock, “Buildbot: Robotic monitoring of agile software
development teams,” in Proceedings of the International
Symposium on Robot and Human interactive Communication
(RO-MAN), pp. 931–936, IEEE, 2007.

[19] R. Rogers, “Scaling continuous integration,” in Extreme
programming and agile processes in software engineering,
no. 3092 in LNCS, pp. 68–76, 2004.

[20] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths
and realities of test-suite evolution,” in Proceedings of the
20th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE), pp. 33:1–33:11, ACM, 2012.

[21] C. Watters and P. Johnson, “Version numbering in single
development and test environment,” Dec. 29 2011. US Patent
App. 13/339,906.

[22] “What is Travis CI.”
https://github.com/travis-ci/travis-ci/blob/

2ea7620f4be51a345632e355260b22511198ea64/README.

textile#goals, Accessed 2015/08/25.
[23] M. Beller, I. Levaja, A. Panichella, G. Gousios, and

A. Zaidman, “How to catch ’em all: Watchdog, a family of
IDE plug-ins to assess testing,” in 3rd International
Workshop on Software Engineering Research and Industrial
Practice (SER&IP 2016), pp. xxx–xxx, IEEE, 2016.

[24] M. Beller, G. Gousios, and A. Zaidman, “How (much) do
developers test?,” in Proceedings of the International
Conference on Software Engineering (ICSE), pp. 559–562,
IEEE, 2015.

[25] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen,
“Work practices and challenges in pull-based development:
The integrator’s perspective,” in Proceedings of the
International Conference on Software Engineering (ICSE),
pp. 358–368, IEEE, 2015.

[26] D. Merkel, “Docker: lightweight Linux containers for
consistent development and deployment,” Linux Journal,
vol. 2014, no. 239, 2014.

[27] G. Gousios, “The GHTorrent dataset and tool suite,” in
Proceedings of the Working Conference on Mining Software
Repositories (MSR), pp. 233–236, IEEE, 2013.

[28] O. Tange, “GNU Parallel - the command-line power tool,”
;login: The USENIX Magazine, vol. 36, pp. 42–47, Feb 2011.

[29] S. McIntosh, M. Nagappan, B. Adams, A. Mockus, and A. E.
Hassan, “A large-scale empirical study of the relationship
between build technology and build maintenance,” Empirical
Software Engineering, vol. 20, no. 6, pp. 1587–1633, 2015.

[30] D. Chelimsky, D. Astels, B. Helmkamp, D. North, Z. Dennis,
and A. Hellesoy, The RSpec Book: Behaviour Driven
Development with Rspec, Cucumber, and Friends. Pragmatic
Bookshelf, 1st ed., 2010.

[31] S. S. Shapiro and M. B. Wilk, “An analysis of variance test
for normality (complete samples),” Biometrika, vol. 52,
no. 3-4, pp. 591–611, 1965.

[32] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. Sjøberg,
“A systematic review of effect size in software engineering
experiments,” Information and Software Technology, vol. 49,
no. 11, pp. 1073–1086, 2007.

[33] A. Vargha and H. D. Delaney, “A critique and improvement
of the CL common language effect size statistics of mcgraw
and wong,” Journal of Educational and Behavioral
Statistics, vol. 25, no. 2, pp. 101–132, 2000.

[34] W. G. Hopkins, A new view of statistics. 1997.
http://newstatsi.org, Accessed 2015/08/25.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1984v1 | CC-BY 4.0 Open Access | rec: 22 Apr 2016, publ: 22 Apr 2016

https://github.com/travis-ci/travis-ci/blob/2ea7620f4be51a345632e355260b22511198ea64/README.textile#goals
https://github.com/travis-ci/travis-ci/blob/2ea7620f4be51a345632e355260b22511198ea64/README.textile#goals
https://github.com/travis-ci/travis-ci/blob/2ea7620f4be51a345632e355260b22511198ea64/README.textile#goals
http://newstatsi.org


[35] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. German, and D. Damian, “An in-depth study of the
promises and perils of mining GitHub,” Empirical Software
Engineering, pp. 1–37, 2015.

[36] Github, “Language trends on GitHub,” Accessed 2015/08/25.
[37] “The Travis CI blog: Supporting the ruby ecosystem,

together.” https://blog.travis-ci.com/

2016-02-03-supporting-the-ruby-ecosystem-together,
Accessed 2016/03/4.

[38] L. Tratt and R. Wuyts, “Guest editors’ introduction:
Dynamically typed languages,” IEEE Software, vol. 24,
no. 5, pp. 28–30, 2007.

[39] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices
and challenges in pull-based development: The contributor’s
perspective,” in Proceedings of the 38th International

Conference on Software Engineering, ICSE, May 2016.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1984v1 | CC-BY 4.0 Open Access | rec: 22 Apr 2016, publ: 22 Apr 2016

https://blog.travis-ci.com/2016-02-03-supporting-the-ruby-ecosystem-together
https://blog.travis-ci.com/2016-02-03-supporting-the-ruby-ecosystem-together

