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Abstract 

The goal of our project is to develop an accurate tagger for questions posted on Stack Exchange. 

Our problem is an instance of the more general problem of developing accurate classifiers for large 

scale text datasets. We are tackling the multilabel classification problem where each item (in this 

case, question) can belong to multiple classes (in this case, tags). We are predicting the tags (or 

keywords) for a particular Stack Exchange post given only the question text and the title of the 

post. In the process, we compare the performance of Support Vector Classification (SVC) for 

different kernel functions, loss function, etc. We found linear SVC with Crammer Singer technique 

produces best results. 

 

1. Main Objectives 

- Use SVC with different kernel functions 

(rbf, linear, polynomial, sigmoid). 

- Compare performance with respect to the 

number of iterations, loss function, 

regularization term. 

2. Status and other details 

- Fully completed and open sourced. 

(https://github.com/shagunsodhani/Stack

Exchange-tagger). 

- Total time spent on the project: 12 days 

3. Major stumbling blocks 

- Stack Exchange Dataset: It took us time 

to scrape the entire dataset. 

- Computational Power Limitation: The 

time complexity for finding Singular 

Value Decomposition (SVD) for an mxn 

matrix is 𝑂(𝑚2𝑛 +  𝑛3). 

- Choice of Error Metric: Since multi-

label classification is different from 

multi-class classification, we need to 

modify accuracy, precision and recall for 

multi-label classifiers.  

4. Introduction 

Stay organized, get found and promote 

yourself – 3 reasons why tags are important 

[1]. Tags are also used as a form of query 

based search for information retrieval [2]. 

Tagging of online content by humans is 

increasing everyday. Hashtags for tweets on 

Twitter and posts on Facebook and Google 

Plus are examples of hashtags in social 

networks. Some work has already been done 

around this problem to address tag prediction 

but it still remains a challenge [3]. Facebook 

also conducted a competiton for predicting 

tags for questions posted on “Stackoverflow 

Network”. This contest, titled "Facebook 

Recruiting III - Keyword Extraction" [4], was 

conducted on Kaggle to recruit developers to 

Facebook. Our work is also inspired by this 

contest. 

There are many challenges involved in 

building a tag prediction system to solve this 

problem. First we need to get data in 

abundance for training our system. Secondly 

data should be constrained which means we 

should have limited number of possible tags. 

For e.g., in case of Twitter, there is no 

restriction on hashtags so Twitter dataset is 

unconstrained in nature. Third real data 

contains lot of noise so pre-processing of data 

(Singular Value Decomposition for 

dimensionality reduction) takes lot of time 

and is also computationally expensive.  

To solve the first two challenges, we used 

Stack Exchange dataset. Stack Exchange is a 

network of 130+ Q&A communities 
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including the very popular Stack Overflow, 

the preeminent site for programmers to find, 

ask, and answer questions about software 

development [5]. The Stack Exchange 

Network covers topics as diverse as 

Mathematics, Home Improvement, Statistics, 

English Language and Usage. To overcome 

computational limitations, we used DELL 

PRECISION T5600 Sever. 

The problem which we are addressing in this 

paper is an instance of the more general 

problem of developing accurate classifiers 

for large scale text datasets (here the dataset 

comprises of posts made on the 

StackExchange network). We are tackling 

the multilabel classification problem where 

each item (in this case, question) can belong 

to multiple classes (in this case, tags). We are 

predicting the tags (or keywords) for a 

particular Stack Exchange post given only 

the question text and the title of the post. 

Given the text and the title, we first parse the 

data to get rid of stop-words. Next we 

perform stemming and lemmatiztion. This is 

followed by tf-idf based filtering and then we 

extract features using SVD. Once we have 

our training data in form of features and 

classes, we train various classifiers with 

linear, polynomial, sigmoid and rbf kernels. 

We vary the number of iterations and the 

error function as well and do a 

comprehensive comparison of the different 

approaches for different values of the 

parameters.  

The organization of the paper is as follows. 

Section 5 summarises related work in this 

field. Section 6 deals with the proposed 

approach. It also deals with the feature vector 

extraction mechanism and dimensionality 

reduction. Section 7 presents the results of 

our experiments. Section 8 concludes the 

paper and section 9 recommends directions 

for future extension of our work. 

5. Related Work 

[3] focuses on mining user interest from their 

behavior on stackoverflow.com and 

leveraging that information for predicting 

tags. Also they focus only on 

stackoverflow.com and not other member 

sites of the StackExchange network. Our 

work is different from existing work as none 

of the existing work does a survey analysis. 

Also most of the related work focus on 

getting good results for a given member site 

of Stack Exchange Network while in our 

case, we keep all the methods to be very 

generalized thereby making them applicale in 

all the member sites. [10] uses a co-

occurrence model that predicts tags based on 

the words in the post and their relation (co-

occurrence) to tags. They built model for 

StackOverflow dataset by constraining the 

next word predicted to only tags. His co-

occurrence model has a 47% classification 

accuracy predicting one tag per post. Our 

experimental results show that we beat his 

accuracy as mentioned in Section 7. 

6. Proposed Approach 

 

Figure 6.1 Proposed System 

Figure 6.1 shows proposed workflow of our 

system. We explain each step in detail in 

following subsection. 

6.1 Data Collection – Stack Exchange 

Data  

StackExchange Network provides all 

community-contributed content under the 

Creative Commons BY-SA 3.0 license. A 



quarterly dump of all this data (after 

sanitization) is updated on the Internet 

Archive. Other than this method, all the data 

ia accessible via StackExchange API. We 

have used both the dumps as well as the API 

to get our data. This data included 

information about Posts, Users, Votes, 

Comments, Badges, PostHistory, and 

PostLinks. Of these, we kept the information 

related to the problem and tags and filtered 

out the remaining information. Figure 6.2 

shows snapshot of a example from 

stackoverflow.com member site. 

 

Figure 6.2 Snapshot of a example from 

stackoverflow.com 

6.2 Data Preprocessing 

6.2.1 Parsing and Removing Noise 

The content obtained from Stack Exchange 

archives and by scraping is in html format. So 

we first parse out the text part by filtering 

HTML tags. Next we remove any code 

snippets that users might have added with 

their question and retain only the words used 

in the question itself. 

6.2.2 Removing Stop Words 

Stop words refer to words like “and”, “or”, 

“the” etc which do not add any specific 

information about the context of text. These 

words are normally removed as a part of 

preprocessing stage. There is no single 

universal list of stop-words which can be 

used in all contexts. In many cases, 

developers have to come up with their own 

list of stopwords. Also what is stopword in 

one context, may not be stopword in another 

context. Eg we may normally treat 

mathematical symbols as stopwords but they 

become relevant if our text contains words 

like C++. 

6.2.3 Stemming 

Stemming [6], [7] refers to the process of 

reducing  words to their word root, also called 

as word stem, and hence the name stemming. 

A  program that can perform stemming is 

referred to as stemmer. E.g., words “fishing", 

"fished", and "fisher" would be stemmed to 

the word "fish". Most Information Retrival 

systems use stemming as a preprocessing 

step before storing data or before performing 

applying more sophisticated techniques on 

user data. A lot of algorithms are available for 

stemming. The prominent ones include the 

porter stemmer, the snowball stemmer and 

the lancaster stemmer. Porter stemmer is the 

most comman algorithm and consists of 5 

phases of word reduction that are applied 

sequentially.   

We have used porter stemmer [8] in our 

implementation as well. 

6.2.4 Lemmatization 

Lemmatization is the process of grouping 

together different forms of a word so as to 

treat them as a single word. This single word 

is called lemma and hence the name 

lemmatization. E.g., the verb ‘to eat’ may 

appear as ‘eat’, ‘ate’, ‘eating’, etc though all 

these words can be reduced to a common 

lemma i.e., ‘eat’.  

We have used the ‘Wordnet lemmetizer’ in 

our implementation. 

6.2.5 Tf-Idf based filtering 

tf–idf [9] (term frequency–inverse document 

frequency) is defined for a word given a 

collection of documents (also called a 

corpus). It indicates how important the word 

is for the given corpus. We have used it as a 

weighing factor to remove some words that 

do not convey information about the context 

of the problem at hand.  The importance 

varies  proportionally with the number of 

times the word appears in the document and 

is inversely proportional to the frequency of 

the word in the corpus. 

𝑡𝑓(𝑡, 𝑑) = 0.5 +  
0.5 ∗ 𝑓(𝑡, 𝑑)

max{𝑓(𝑤, 𝑑): 𝑤 ∈ 𝑑}
 

Where, 𝑡 refers to term, 

𝑑 refers to document, 



𝑡𝑓(𝑡, 𝑑) is term frequency, 

𝑓(𝑡, 𝑑) is the raw frequency of a term in a 

document. 

𝑖𝑑𝑓(𝑡, 𝐷) = 𝑙𝑜𝑔
𝑁

|{𝑑 ∈ 𝐷 ∶ 𝑡 ∈ 𝑑}|
 

Where, 𝑁 is the total no. of documents in the 

corpus, 
|{𝑑 ∈ 𝐷 ∶ 𝑡 ∈ 𝑑}| is number of documents 

where the term 𝑡 appears. Finally tf-idf is 

calculated as : 

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) ∗ 𝑖𝑑𝑓(𝑡, 𝐷) 

6.3 Feature Extraction 

Feature extraction refers to the process of 

deriving features/values from the given 

dataset such that the derived features are 

more informative and less redundant than the 

parameters in the given dataset. This is 

closely related to dimensionality reduction 

where in we reduce the number of 

dimensions of the given dataset to make 

computations feasible. Some important 

techniques include SVD (Singular Value 

Decomposition) and PCA (Principle 

Component Analysis). We have used SVD 

and will be explaining it further.  

SVD [9] is a dimensionality reduction 

technique that produces a factorization of any 

matrix, real or complex. SVD connects the 

rows and columns of a matrix by defining a 

small number of “concepts”. 

 

Figure 6.3 The form of a Singular Value 

Decomposition(Courtesy [9]) 

Let 𝑀 be an m × n matrix, and let the rank of 

𝑀 be r. Rank of a matrix is the largest number 

of rows (or equivalently columns) that we can 

choose for which no nonzero linear 

combination of the rows is the all-zero vector 

0. Figure 6.3 shows the form of a Singular 

Value Decomposition. Then, given 𝑀, we 

can find matrices 𝑈, 𝑆, and 𝑉 such that : 

𝑀 = 𝑈Σ𝑉𝑇 

Where, 𝑈, Σ and 𝑉𝑇 satisfies the following 

properties : 

1. 𝑈 is an m x r column-orthonormal 

matrix. 

2. 𝑉 is an n x r column-orthonormal 

matrix. 

3. Σ is a diagonal matrix. 

The diagonal entries 𝜎𝑖 of Σ are known as the 

singular values of 𝑀. If we list the singular 

values in descending order, the diagonal 

matrix Σ is uniquely determined by 𝑀. 

6.4 Building Tag Predictor 

6.4.1 Support Vector Classification 

(SVC) 

We consider one-vs-all classifier. Given 

training vectors 𝑥𝑖 ∈  ℝ𝑝, 𝑖 = 1, … , 𝑛 in 2 

classes, and a vector 𝑦𝑖 ∈ {1, −1}𝑛, our 

primal problem formulation is as follows: 

min
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1   

subject to  

𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏)  ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0, 𝑖
= 1, … , 𝑛 

Its dual is as follows:  

min
1

2
𝛼𝑇𝑄𝛼 −  𝑒𝑇𝛼  

subject to  

𝑦𝑇𝛼 = 0 and 0 ≤  𝛼𝑖  ≤ 𝐶, 𝑖 = 1, … , 𝑛 

where,  𝑒 is the vector of all ones,  

𝐶 > 0 is the upper bound and 𝐶 is 

regularization parameter,  

𝑄 is an 𝑛 by 𝑛 positive semidefinite 

matrix,  

𝑄𝑖𝑗 = 𝐾(𝑥𝑖, 𝑥𝑗) =  ∅(𝑥𝑖)𝑇∅(𝑥𝑗) is the 

kernel.  

The decision function as defined in [11], [13] 

is: 

𝑠𝑔𝑛(∑ 𝑦𝑖𝛼𝑖𝐾(𝑥𝑖 , 𝑥𝑛
𝑖=1 ) +  𝜌 ),  

Where, 𝜌 is intercept. 

We have considered various kernel 

functions in our case – rbf, linear, polynomial 

with degree = 2 and 3 and also sigmoid. 

Comparative study of all these kernels is 

presented in the next section. We also varied 

𝐶. Large 𝐶 means we are modeling hard-

margin svc which leads to low training error 

but poor generalization. We also vary the 



number of iterations. Experimental results 

are covered in next section. 

6.4.2 Linear Support Vector 

Classification (Linear SVC) 

Linear SVC is SVC with a Linear Kernel. We 

are performing further tweaking with linear 

SVC as our previous results indicated that 

Linear SVC peforms better than SVC with 

other kernels.  When using Linear SVC, we 

experiment around with both the loss 

function and with the optimization technique 

- namely the traditional multi-class 

optimization technique or the crammer singer 

approach. We played around with "hinge" 

loss function and "squared hinge" loss 

function. Next we take up the traditional 

multi-class optimization technique vs 

crammer singer approach. 

The primary approach for solving multiclass 

problems using support vector machines has 

focused on reducing a single multiclass 

problems into multiple binary problems. For 

e.g., we may build a set of binary classifiers 

to distinguish between labels. This approach 

is more commonly known as the one-vs-rest 

approach. An alternate method was proposed 

by Crammer and Singer [12]. They have used 

the dual of the optimization problem to 

incorporate kernels with a compact set of 

constraints and decomposed the dual 

problem into multiple optimization problems, 

each of reduced size. They then use a fixed-

point algorithm to solve these reduced 

optimization problems. This way crammer 

singer approach optimizes a joint objective 

over all classes. Also in crammer singer 

approach, the results are not affected by the 

loss function used which we infer from the 

next section. 

6.5 Testing Tag Predictor 

Multi-label classification is different from 

multi-class classification and hence requires 

different metrics than the ones we use for 

traditional multi-class classification. The 

error metrices that we have used are proposed 

in [14] for multi-label classification 

problems. 

Let 𝐷 be a multi-label evaluation data set, 

consisting of |𝐷| multi-label examples 

(𝑥𝑖, 𝑌𝑖), 𝑖 =  1. . |𝐷|, 𝑌𝑖  ⊆  𝐿. Let 𝐻 be a 

multi-label classifier and 𝑍𝑖 = 𝐻(𝑥𝑖) be the 

set of labels predicted by 𝐻 for 𝑥𝑖. The 

following metrics for the evaluation of 𝐻 and 

𝐷 are used: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐻, 𝐷) =  
1

|𝐷|
∑

|𝑌𝑖  ∩  𝑍𝑖  |

|𝑌𝑖  ∪  𝑍𝑖  |

|𝐷|

𝑖=1

 

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐻, 𝐷) =  
1

|𝐷|
∑

|𝑌𝑖  ∩  𝑍𝑖  |

|𝑍𝑖|

|𝐷|

𝑖=1

 

 

𝑅𝑒𝑐𝑎𝑙𝑙(𝐻, 𝐷) =  
1

|𝐷|
∑

|𝑌𝑖  ∩  𝑍𝑖  |

|𝑌𝑖|

|𝐷|

𝑖=1

 

 

We define percentage error as follows:  

𝑒𝑟𝑟𝑜𝑟 = (1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐻, 𝐷)) ∗ 100.  

7. Experimental Results 

We considered total 10,000 questions. We 

divided the preprocessed data into training 

set (80%) and testing set (20%). We applied 

k-fold cross validation to obtain an average 

accuracy. We retain 90% of variance when 

using SVD. The number of features after 

applying SVD are ~3,000. The number of 

classes we are dealing with are 10. All the 

results below are for exact matching (as 

opposed to atleast one match). All the code 

used in these experiment has been 

implemented from scratch and has been open 

sourced on github [15]. 

Table 7.1 Training Errors for linear 

SVM. (Variation with change in penalty 

term and number of iterations) 

SVC  

(Kernel = RBF) 

C = 1000 

(hard) 

C =0.001 

(soft) 

200 39.0 % 47.0 % 

400 31.1 % 62.6 % 

600 23.4 % 36.1 % 

800 22.62 % 36.1 % 



1000 22.34 % 36.1 % 

 

Table 7.1 shows the performance of SVC 

with RBF kernel for the training dataset for 

the soft margin and the hard margin case as 

the number of iterations are varied. As the 

number of iterations increases, the training 

error decreases. Also soft-margin has more 

training error which means good 

generalization as expected.  

Table 7.2 Testing Errors for linear SVM. 

(Variation with change in penalty term 

and number of iterations) 

SVC  

(Kernel = RBF) 

C = 1000 

(hard) 

C =0.001 

(soft) 

200 54.5 % 54.87 % 

400 50.0 % 66.13 % 

600 43.6 % 48.5 % 

800 43.5 % 48.5 % 

1000 43.2 % 48.5 % 

Table 7.2 shows the performance of SVC 

with RBF kernel for the testing dataset for the 

soft margin and the hard margin case as the 

number of iterations are varied. As the 

number of iterations increases, the testing 

error decreases. Also rbf  kernel is able to 

beat the method in [10]. 

Table 7.3 Training Error for SVC. 

(Variation with change in penalty term 

and kernel) 

Kernel C = 1000 

(hard) 

C =0.001 

(soft) 

RBF 21.8 % 36.1 % 

Linear 19.0 % 29.5 % 

Polynomial 

(n=2) 

24.3 % 31.1 % 

Polynomial 

(n=3) 

34.0 % 83.2 % 

Sigmoid 83.2 % 83.2 % 

 

Table 7.2 shows the performance of SVC 

with RBF kernel for the testing dataset for the 

soft margin and the hard margin case as the 

number of iterations are varied. As the 

number of iterations increases, the testing 

error decreases. Also rbf  kernel is able to 

beat the method in [10]. 

Table 7.3 shows the performance of SVC 

with different kernel function for the training 

dataset for the soft margin and the hard 

margin case while the number of iterations 

fixed to 10,000. As we can infer that linear 

kernel performs best followed by rbf then 

polynomial with degree 2 and polynomial of 

degree 3. Sigmoid kernel gives the worst 

performance. Also soft-margin has more 

training error which means good 

generalization as expected. 

Table 7.4 Testing Error for SVC. 

(Variation with change in penalty term 

and kernel) 

Kernel C = 1000 

(hard) 

C =0.001 

(soft) 

RBF 
43.1 % 48.5 % 

Linear 
51.9 % 45.2 % 

Polynomial 

(n=2) 54.4 % 65 % 

Polynomial 

(n=3) 72.2 % 84.4 % 

Sigmoid 
84.4 % 84.4 % 

 

Table 7.4 shows the performance of SVC 

with different kernel function for the testing 

dataset for the soft margin and the hard 

margin case while the number of iterations 

fixed to 10,000. As we can infer that linear 

kernel performs best (soft-margin) followed 

by rbf then polynomial with degree 2 and 

polynomial of degree 3. Sigmoid kernel gives 

the worst performance. Also soft-margin has 

less testing error which means good 

generalization as expected. 

Table 7.5 Training Error for Linear SVC. 

(Variation with change in error function 

and technique) 

Technique Hinge Loss 

Function 

Square 

Hinge Loss 

Function 

One-vs-rest 
37.52 % 67.79 % 



Crammer Singer 
30.71 % 30.71 % 

 

Table 7.5 shows the performance of linear 

SVC with different error functions and 

techniques. C is set to 0.001 (soft-margin) 

and the number of iterations is fixed to 

10,000. First we observe that training error 

remains same for Crammer Singer technique 

irrespective of the error function. Crammer 

Singer technique performs better than One-

vs-rest approach. For One-vs-rest, Square 

Hinge Loss function gives more training 

error because outliers are penalized more. 

Table 7.6 Testing Error for Linear SVC. 

(Variation with change in error function 

and technique) 

Technique Hinge Loss 

Function 

Square Hinge 

Loss Function 

One-vs-rest 
47.59 % 68 % 

Crammer 

Singer 45.25 % 45.25 % 

 

Table 7.6 shows the performance of linear 

SVC with different error functions and 

techniques. C is set to 0.001 (soft-margin) 

and the number of iterations is fixed to 

10,000. First we observe that testing error 

remains same for Crammer Singer technique 

irrespective of the error function. Crammer 

Singer technique performs better than One-

vs-rest approach. For One-vs-rest, Square 

Hinge Loss function gives more testing error 

because outliers are penalized more. 

8. Conclusion 

We conclude that linear SVC performs better 

than all other kernel functions in case of both 

soft and hard margin problem. In case of 

linear SVC, linear SVC with Crammer Singer 

technique for soft-margin performs better 

than ome-vs-rest technique. The best 

accuracy obtained in our case is 54.75%. 

9. Future Scope 

Feature selection (dimensionality reduction) 

is a computationally expensive step, so we 

need to deal with this step for large data size. 

Also for our analysis we considered only the 

text part of the data and ignored any code 

segements or user information present in the 

system. Also many tags co-occur. E.g., a 

question tagged “android” would likely be 

tagged “java” as well. We did not try to learn 

these co-occurences. These considerations 

can help to further improve upon accuracy. 
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