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Abstract. Depending on the reading objective or task, text portions with certain
linguistic features require more user attention to maximize the level of under-
standing. The goal is to build a predictor of these text areas. Our strategy consists
in synthesizing image representations of linguistic features, that allows us to use
natural language processing techniques while preserving the topology of the text.
Eye-tracking technology allows us to precisely observe the identity of fixated
words on a screen and their fixation duration. Then, we estimate the scaling fac-
tors of a linear combination of image representations of linguistic features that
best explain certain gaze evidence, which leads us to a quantification of the influ-
ence of linguistic features in reading behavior. Finally, we can compute saliency
maps that contain a prediction of the most interesting or cognitive demanding ar-
eas along the text. We achieve an important prediction accuracy of the text areas
that require more attention for users to maximize their understanding in certain
reading tasks, suggesting that linguistic features are good signals for prediction.

1 Introduction

Reading is an important method for humans to receive information. While skilled read-
ers have powerful strategies to move fast and optimize their reading effort, average
readers might be less efficient. When producing a text, the author may or may not be
aware of the text areas that require more attention from users. Moreover, depending on
the reading objective or strategy, there might be different areas that catch user’s atten-
tion for longer periods of time. Ideally, readers would know a priori what are the pieces
of text with the most interesting linguistic characteristics to attain his/her reading ob-
jectives, and proceed to the reading act consequently. However, due to the uncertainty
on the distribution of time-demanding portions of text, users may incur in an inefficient
use of cognitive effort when reading.

The goal is then, given a user and a text, provide a map with the most interesting text
areas according to user’s reading objective. We work under the assumption that on-line
cognitive processing influences on eye-movements [10], and that people with different
reading strategies and objectives fixate on words and phrases with different linguistic
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features. Thus, given the same text, different maps might be displayed when users have
different objectives or reading strategies.

Traditionally, in the field of computational linguistics, features and models have been
developed to explain observations of natural language, but not to explain the cognitive
effort required to process those observations by humans. In the present work, the first
step is to quantify the influence of linguistic features when users are performing differ-
ent reading tasks. We will use an eye-tracker device to capture gaze samples when users
read texts. Then, we will synthesize image representations of these gaze samples and
image representations of several linguistic features. By assigning a relevance weight to
the image representations of linguistic features, we can find the best configuration of the
value of these scaling factors that best explain the image representation of the reference
gaze samples. After obtaining the influence of each linguistic feature on every reading
objective, maps showing the attention requirements of new texts could be automatically
obtained and displayed to users before they start their reading act, or documents could
be conveniently formatted according to these maps.

As far as we know, our approach is the first attempt to use natural language pro-
cessing (NLP) techniques while preserving the topology of the words appearing on
the screen. The necessity to develop this framework arises from the integrated use of
gaze information that consists in spatial coordinates of gaze and the linguistic infor-
mation that can be extracted using traditional NLP techniques [8]. We believe that by
synthesizing image representations of linguistic features, image processing techniques
become available to perform natural language processing that inherently incorporates
the geometric information of the text and gaze.

This paper is organized as follows. Next section describes previous work related
to the present investigation. Then, we briefly introduce a recent text-gaze alignment
method using image registration techniques that we borrow from [9] for completeness.
In section 4 we introduce the technique to build image representations of reference gaze
data. We describe in detail in section 5 how image representations of linguistic features
are synthesized and how their influence on reading behavior is estimated. A description
of the reading objectives, experimental settings and empirical results are in section 6.
Some conclusions and future directions are left for the final section.

2 Related Work

Gaze data and natural languages are different modalities that suffer from an important
ambiguity. In order to use these sources of information successfully, meaningful fea-
tures and consistent patterns have to be extracted. Under this perspective, there exist
two types of approaches.

In the first approach, there is a search for linguistic features that activate cognitive
processes. A recent example following this idea can be found in the field of active
learning. Supervised machine learning NLP approaches require an increasing amount
of annotated corpus and active learning has proved to be an interesting strategy to opti-
mize human and economical efforts. Active learning assumes the same cost to annotate
different samples, which is not accurate. With the purpose to unveil the real cost of an-
notation, [15] propose to empirically extract features that influence cognitive effort by
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Fig. 1. On the left, raw gaze data superimposed on text bounding boxes. On the right, linearly
transformed gaze data (translation = −38 pixels, scaling = 1.13) on text bounding boxes. Most
gaze samples in the figure on the right are mapped onto a reasonable bounding box.

means of an eye-tracker. They affirm that their model built using these features explains
better the real annotation efforts.

The objective of the second approach is to find reading behavior characteristics1 that
reflect certain linguistic features. Authors in [3] found that certain characteristics of
reading behavior correlate well with traditional measures to evaluate machine transla-
tion quality. Thus, they believe that eye-tracking might be used to semi-automatically
evaluate machine translation quality using the data obtained from users reading machine
translation output.

In the present work, we make use of gaze data reflecting cognitive processing to
extract the importance of linguistic features with the objective of predicting the attention
that users will have when reading text. This will be implemented using techniques from
image recognition for error-correction, function optimization and synthesis.

3 Text-Gaze Alignment

Eye-tracking technology is improving fast and modern devices are becoming more
affordable for laboratories and companies. Despite of this rapid development, eye-
trackers still introduce measurement errors that need to be corrected at a preprocessing
stage. [4] describe two types of errors in a typical eye-tracking session. The first type
is variable errors that can be easily corrected by aggregating the gaze samples into fix-
ations. The second type is systematic errors. Systematic errors often come in the form
of vertical drifts [5] and they are more difficult to correct.

Researchers and practitioners of eye-tracking have developed their own error correc-
tion methods, but they are either too task-specific or introduce constraints on reading
behavior. [9] model the error-correction problem as an image registration task that is

1 Under the assumption that reading behavior is an indicator of cognitive processing. This is also
called the eye-mind assumption.
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briefly described in this section. Image registration is a well studied technique to align
two or more images captured by different sensors. In our context, it can be used as a gen-
eral error correction method in unconstrained tasks where the objective is to align the
image representation of gaze samples to the image representation of words appearing on
the screen. This method works reasonably well under the assumption that users solely
fixate on text. The key is to define a spatial transformation to map gaze coordinates into
the space of words. Addressing the vertical drift reported in [5], a linear transformation
is defined as ga,b : (x, y) → (x, y · b + a) where a (translation) and b (scaling) are the
transformation parameters of the y-coordinates that have to be estimated by means of
a non-linear optimization strategy. An easy objective function measures how well gaze
samples are mapped into word bounding boxes. Let Ga,b be the image representation of
the mapped gaze samples, where pixel Ga,b(i, j) has a high value if there is a gaze sam-
ple in coordinates (i,j). And let W the image representation of word bounding boxes
in a text, where pixel W(i, j) has a high value if it falls inside a word bounding box. A
measure of alignment between the two image representations can be defined as the sum
of absolute differences of pixels (i,j):

f(Ga,b,W) =
∑

i

∑

j

|Ga,b(i, j)−W(i, j)| (1)

The intention is then to estimate the values (â, b̂) of the transformation parameters that
minimize the objective function f :

(â, b̂) = argmin
a,b

f(Ga,b,W) (2)

= argmin
a,b

∑

i

∑

j

|Ga,b(i, j)−W(i, j)| (3)

Due to the non-convexity nature of the solution space, this optimization is iteratively
performed using different levels of blurs in what is called multi-blur optimization and
hill-climbing at every iteration. Typical results of the error correction of gaze samples
using this method can be found in fig. 1. Then, by using the information on the structure
of the text, gaze samples can be collapsed into fixations according to their closest word
bounding box.

4 Gaze Evidence

Psycholinguistic studies have long noted that eye-movements reveal many interesting
characteristics [14]. For example, fixation locations are usually strongly correlated with
current focus of attention and, when users read text, they indicate the identity of the
word or phrase that the subject is currently processing. Another variable, fixation du-
rations, is useful in quantifying other hidden processes such as user’s familiarity with
the text or with specific terms, whether or not the text is written in the user’s native
language, etc. Among saccadic movements, length and direction of regressions are also
interesting features of the reading act that occur in diverse situations as when the sub-
ject reads about a fact that gets in contradiction with prior knowledge. Although forward
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and backward saccadic movements provide relevant information on subjects and texts,
they might be ambiguous and difficult to interpret by using automatic methods in un-
constrained tasks. For this reason, in this work we will only focus on the interpretation
of fixation locations and their duration.

Fixation locations and their durations depend on many variables that mainly come
from two sources. The first source is from subject’s personal characteristics, namely
prior background knowledge, native language, cultural identity, interests or reading ob-
jectives. Examples of reading objectives are precise reading, question answering, writ-
ing a review or preparing a presentation. The second source of variables are related to
the linguistic characteristics of the text.

As we have previously stated in the introduction, we are interested in finding the
importance of individual linguistic features to explain certain reading behaviors when
users are reading texts with different objectives in mind. When pursuing these objec-
tives, different users may have different levels of success. There are many types of read-
ing objectives that can be set to guide subject’s reading strategy, where writing reviews
or preparing presentations tasks are among them. The level of success of these reading
tasks can be evaluated by assessing the performance of the actions that subjects have to
carry out after reading, but it might be difficult since there are other variables that may
influence subject’s performance, such as personal (in)ability to prepare presentations or
prior prejudices about the topic the subject writes the review about. For this reason, we
limit ourselves to reading objectives whose attainment degree can be easily evaluated as
a function of the level of understanding achieved, as measured by an interview with the
subject to quantify the accuracy and completeness of his/her answers. Examples of this
type of reading objectives are precise reading, question answering or obtaining general
information in a very limited amount of time.

Our intention is to predict the text areas where subjects should fixate longer in order
to maximize their level of understanding. Thus, we have to obtain gaze evidence that
serves as a reference of effective reading behavior. One may be tempted to sample the
population of subjects and select the most effective reader. There might be, however,
other subjects that follow a different reading strategy and achieve other effectivity lev-
els that we should take into consideration. In order to include this uncertainty in our
system, we weight the gaze evidence obtained by all users according to their level of
understanding. Let Gu be the image representation of gaze evidence obtained from user
u when reading a certain text, and let λu his/her level of understanding on that text. By
considering the image representation of gaze evidence as a matrix whose (i, j) posi-
tions denote pixels with a gray value between 0 and 1, we can obtain a reference gaze
evidence by scaling the evidence of every subject with his/her level of understanding:

Gτ =
∑

u

λu ·Gu (4)

An schema representing the idea of scaling gaze evidence by user’s level of under-
standing can be found in fig. 2. The linear combination of image representations of
gaze evidence is carried out using scaling factors λu and it is essential to preserve the
sense of uncertainty in our system.
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Fig. 2. In order to obtain a reference gaze evidence Gτ that also accounts for the uncertainty
of different reading strategies, image representations of gaze samples are scaled by the level of
understanding λu of every user.

5 Quantifying Influence of Linguistic Features

Eye-actions can be roughly classified into two important categories. The first one con-
sists in fixations, where eyes remain still, gazing on a word or phrase for lexical pro-
cessing. The second category is saccades, consisting in abrupt eye-movements that are
used to place the gaze on different text locations. Syntactic and semantic integration
of lexical information is believed to influence these eye-movements [10]. While both
eye-actions provide much information about on-line cognitive processing, in this work
we will only use information about fixation locations and their durations.

The identity of fixated words and their fixation duration depend on many factors.
Some of these factors are related to personal characteristics, e.g. reading objective, read-
ing skill, prior knowledge that serves as background, user’s interests, etc. Other factors
depend on the linguistic features of the text [14], e.g. lexical properties of words, syn-
tactic or semantic features, etc. The study on the impact of each of these factors is in-
teresting, but it will be limited in this work to linguistic features and reading objectives.
The factor of reading objectives influences on data collection and it will be discussed in
its own section.

Within the image recognition field, saliency maps [6] represent visual salience of a
source image. Similarly, we can synthesize image representations of a text that describe
it, while preserving the topological arrangement of words. There are multiple possi-
bilities to describe text according to its linguistic features. Many interesting linguistic
features can be numerically described. For instance, we can think of word unpredictabil-
ity as a probability, as given by an N-gram language model. Other examples are word
length, or semantic ambiguity, according to the number of senses in WordNet [11].

To synthesize an image representation of a certain linguistic feature, we filled the
word bounding boxes with a gray level between 0 and 1, proportional to the numeri-
cal value of the linguistic feature. Fig. 3 shows two examples of image representations
of linguistic features. In order to account for the uncertainty introduced by measure-
ment and user errors, images are slightly blurred by convolving them with an isotropic
gaussian filter with spread σ = 10 pixels. Finally, to normalize the intensity when com-
paring different image representations of linguistic features, the intensity of the images
are adjusted so that only the upper and lower 1% of the pixels are saturated.
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Fig. 3. Two examples of image representations of linguistic features. On the left, image represen-
tation of semantic ambiguity as given by the number of senses of every word in WordNet. On the
right, image representation of Nouns, where bounding boxes of words that are nouns are filled
with high pixel values. Note that the pixel values of these images are complemented for clarity.

The final step is to find the weight ωf of the image representations of every linguistic
feature. Let’s consider again images as matrices whose pixels are elements with a value
between 0 and 1 and denote by Gτ the image representation of the error-corrected gaze
evidence. We denote by WF

1 = {W1, . . . ,Wf , . . . ,WF } the list of image represen-
tations of F linguistic features. A dissimilarity function between the gaze evidence and
the linguistic features can be defined as the absolute pixel-wise (i, j) difference between
the images:

g(Gτ ,WF
1 ) =

∑

i

∑

j

|Gτ (i, j)−
F∑

f=1

ωf ·Wf(i, j)| (5)

where the image representations of the linguistic features are linearly combined by
scaling factors ωf . Then, a standard algorithm can be used to perform a non-linear
optimization to minimize the dissimilarity. Formally,

ω̂ = argmin
ω

g(Gτ ,WF
1 ) (6)

= argmin
ω

∑

i

∑

j

|Gτ (i, j)−
F∑

f=1

ωf ·Wf (i, j)| (7)

A graphical schema of the combination process can be found in fig. 4. The objective of
the optimization is to estimate the importance of different linguistic features so that the
linear combination best explains the gaze evidence used as a reference.

6 Experimental Results

6.1 Experimental Settings

We believe that the importance of different linguistic features to explain certain reading
behavior depends on the reading objective. Following this hypothesis, we designed three
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Fig. 4. Schema representing the estimation of several linguistic features (on the bottom) that
best explain certain gaze evidence (on the top). Image representations of different linguistic fea-
tures are linearly combined with scaling factors ωf and their values are estimated by means of
a standard non-linear optimization method. For clarity, the value of the pixels in the images are
complemented and the image representations have not been blurred nor their intensity adjusted.

tasks with different reading objectives. There were two documents with a different topic
for every task. In the first task, subjects were asked to carefully read a text and that
some questions about the text will be asked after. Subjects were also told that they
could spend as much time as they need to maximize their understanding about the text,
but such a text would not be available during the evaluation of their understanding. In
order to check the level of understanding, open questions, true-false and select-correct-
answer questions were asked. In the second task, subjects were given questions before
the reading act and asked them to find the answers in the text. We asked one and two
short questions (for each document, respectively) for users to easily remember them
and not to cause extra cognitive load. In the third task, we asked subjects to obtain as
much information as possible from a text in only 10 seconds. We told them that they
would be required to speak out as much information as they obtained after the reading
and that their reading did not have to be necessarily sequential.

For every task, there were two documents in English presented to the subjects. These
documents consisted in short stories extracted from interviews, fiction and news. The
average number of sentences per document was 13.50 and the average number of words
per sentence was 20.44.

While subjects were reading the documents on the screen, Tobii TX300 was used to
capture gaze samples at a rate of 300 Hz in a 23” screen at a resolution of 1920 x 1080,
resulting in more than 800MBs of gaze coordinates. Text was justified in the center of
the screen, from the top-most left position located at pixels (600px, 10px) to the bottom-
most right position located at (1300px, 960px). Words were displayed in a web browser
using Text2.0 framework [1] allowing to easily format the text using CSS style-sheets
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Table 1. List of linguistic features divided in three categories: lexical, syntactic and semantic.
Instances of $tag are “Noun”, “Adjective”, “Verb”, etc. Word unpredictability is computed as
the perplexity by a 5-gram language model. Heads and parse trees are extracted using Enju [12],
an English HPSG parser.

Category Linguistic feature type

Lexical

word length Integer
contains digit Binary

word unpredictability Real
contains uppercase Binary

is all uppercase Binary

Syntactic

is head Binary
is POS $tag (23 features) Binary

height of parse tree of its sentence Integer
depth of the word in the parse tree Integer

word position in sentence Integer

Semantic
is named entity Binary

ambiguity: number of senses from WordNet Integer

and to recover the geometric boundaries of the words. The font family was Courier
New of size 16px, text indentation of 50px and line height 30px, in black on a light
gray background. A chin rest was used to reduce errors introduced by readers. Text on
the screen was short enough not to require any action to entirely visualize it. There were
10 subjects participating in three tasks consisting in two documents each. The subjects
were undergraduate, master, Ph.D. and post-doc students from China, Indonesia, Japan,
Spain, Sweden and Vietnam with a background in Computer Science.

The eye-tracker was calibrated once per subject and document. Then, an unsuper-
vised text-gaze alignment using the image registration technique [9] was used to auto-
matically correct vertical measurement errors. There were two sessions2 (out of 60) that
needed manual correction of horizontal errors and another session had to be corrected
using better vertical scaling and translation than the one automatically obtained by the
unsupervised method.

There is a huge amount of linguistic features that could be considered to explain cer-
tain reading behaviors. Intuitively, some features might be more relevant than others,
but ideally all of them should be included in the model with different scaling factors
according to the gaze evidence. We divided the type of linguistic features into three
classes: lexical, syntactic and semantic features. Although the list could be bigger, Ta-
ble 1 contains the linguistic features that were used in this work. Examples of these
features are the part-of-speech (POS) tag, or the word unpredictability as measured by
the perplexity computed using a 5-gram language model estimated using the EuroParl
corpus [7] and smoothed using modified Kneser-Ney smoothing [2]. In order to find the
best estimates ω̂ of the scaling factors ωf in eq. 7, we used Powell’s dogleg trust region
algorithm [13] as a standard non-linear optimization method.

2 A session is defined as a subject reading a document.
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Table 2. Average values and standard deviation of dissimilarity between the image representa-
tion of the test gaze evidence and the linear combination of weighted image representations of
linguistic features in a cross-validation. The scale of the values can be found in the last column.

precise reading question answering 10-second reading
doc. 1 doc. 2 doc. 3 doc. 4 doc. 5 doc. 6 scale

baseline 403± 4.1 456± 5.9 463± 9.7 444± 4.5 431 ± 0.2 415± 0.1 ×103

scaled feats. 288± 3.1 325± 2.6 349± 8.5 371± 3.6 419± 4.1 562± 5.7 ×103

Table 3. Average correlation between the vectors of scaling factors obtained from the cross-
validation. A high intra-document correlation can be appreciated between the scaling factors
within the same document. A low inter-document correlation can be appreciated between the
scaling factors estimated for different documents within the same task.

precise reading question answering 10-second reading
doc. 1 doc. 2 doc. 3 doc. 4 doc. 5 doc. 6

doc. 1 0.94 0.34 – – – –
doc. 2 0.34 0.96 – – – –
doc. 3 – – 0.93 0.37 – –
doc. 4 – – 0.37 0.96 – –
doc. 5 – – – – 0.96 −0.19
doc. 6 – – – – −0.19 0.94

6.2 Results

In order to evaluate the predictive power of the linear combination of image representa-
tions of linguistic features, leaving-one-out cross-validation was used. Cross-validation
was carried out among all subjects within the same document, and every observation
consisted in a single session (per document) containing gaze evidence of a subject. Us-
ing the training set, scaling factors of the linguistic features were estimated and an im-
age representation of the weighted linguistic features was synthesized and compared to
the gaze evidence in the test data. The average results of such comparison can be found
in Table 2. As a baseline, we used uniform weights to scale the image representations
of the linguistic features in Table 1.

It can be observed that in the precise reading and question answering tasks, there is
a consistent and significant reduction in the dissimilarity of the image representations
of the test gaze observations and the linear combination of image representations of
linguistic features, when compared to the baseline. However, in the 10-second task, the
model fails at predicting the distribution of the gaze evidence since the dissimilarity is
not consistently reduced. We have two hypotheses to explain such a fact. The first one
is that subject’s personal characteristics (e.g. background knowledge, native language,
etc.) are essential features to explain the reading behavior in the latter task. The second
hypothesis is that we have left out important linguistic features.

As we have seen, for the precise reading and the question answering task, the linear
combination of image representations of linguistic features helps to explain the gaze
evidence of readers within the same document. The remaining question is whether the
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scaling factors of the linguistic features are good predictors for different documents
that are being read using the same reading strategy. To answer this question, we have
computed the average correlation between the value of the estimated scaling factors
for observations between different documents of the same reading task, together with
the correlations within the same document. The results can be observed in Table 3. It
can be appreciated that the inter-document correlation is low, suggesting that the esti-
mated weights of the linear combination from one document are not good predictors
for other documents. This contrasts with the high intra-document correlation, reinforc-
ing the consistency of the estimations to explain gaze evidence from different subjects
within the same document. Since the intra-document precision is considerable, the most
plausible explanation is that more documents of the same reading objective are needed
to robustly estimate the scaling factors of such amount of linguistic features.

7 Conclusions and Future Work

In the first stage, we have collected gaze evidence from subjects reading documents us-
ing three different reading objectives and measured their level of understanding. Well-
known systematic errors were corrected using image-registration techniques. Then, a
reference gaze evidence has been obtained by linearly combining the image represen-
tations of the gaze evidence of every subject scaled by their level of understanding. In
the second stage, image representations of several linguistic features have been synthe-
sized and the importance of every linguistic feature has been estimated to explain the
reference gaze evidence. The predictive power of the linear combination of image repre-
sentations of linguistic features have been assessed on held-out data. Our model obtains
higher recognition accuracy than a non-informed system in the precision reading and
question answering task. However, our model fails at predicting reading behavior in the
10-second reading task.

In order to evidence the generalization power of our model using the estimated scal-
ing factors, we computed the correlation between the scaling factors trained on different
documents of the same reading objective task. We found a high intra-document corre-
lation but a low inter-document correlation within the same task.

The results of this work find an immediate application to collaborative filtering and
recommendation using gaze data as implicit feedback, since using gaze data from dif-
ferent users within the same document proves to be useful for prediction. For user per-
sonalization, however, systems may need gaze data captured from a larger amount of
documents.

For the future work, it might be interesting to include linguistic features that are
related to the discourse of the document and that we believe may play a significant role
in academic learning. Another interesting research direction is related to the study of the
personal characteristics that help to explain certain gaze evidence beyond the linguistic
features of the text. We acknowledge, however, the intrinsic difficulty of obtaining an
accurate description of user’s personal characteristics in a large scale real application. In
such scenario where we are constrained to a low intrusion into personal characteristics,
user’s personal features can be included into the model as latent variables and they can
be estimated, together with the patent variables (e.g. linguistic features), formulating
the optimization as an incomplete data problem.
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